
 

  

UNIT I 
 
 

INTRODUCTION TO MOS TRANSISTOR 
 
 
 
Basic MOSFET Structure 

 
The cross-sectional and top/bottom view of MOSFET are as in figures 1 and 2 given 
below : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig 1 Cross-sectional view of MOSFET                 fig 2 Top/Bottom View of MOSFET An n- 

MOSFET 

It consists of a source and a drain, two highly conducting n-type semiconductor regions which 

are separated from the p-type substrate by reverse-biased p-n diodes. A metal or poly crystalline 

gate covers the region between the source and drain, but is isolated from the semiconductor by 

the gate oxide. 

Types of MOSFET 
 
 
MOSFETs are divided into two types viz. p-MOSFET and n-MOSFET depending upon its 
type of source and drain. 

 
 
 
 
 
 
 
 
 
 
 
 
p-MOSFET                           n-MOSFET                                             c-MOSFET 

 
 
The combination of a n-MOSFET and a p-MOSFET is called cMOSFET which is the 
mostly used as MOSFET transistor. We will look at it in more detail later. 



 

  

 
 

 

    

 
 

  
 

MOSFET I-V Modelling 
 
 
We are interested in finding the outputcharacteristics ( ) and the transfer charcteristics 
of the MOSFET. In other words, we can find out both if we can formulate a 
mathematical equation of the form: 

 
 

 

We can say that voltage level specifications and the material parameters cannot be altered by 
designers. So the only tools in the designer's hands with which he/she can improve the 
performance of the device are its dimensions, W and L In fact, the most important parameter 
in the device simulations is ratio of W and L. 

 
The equations governing the output and transfer characteristics of an n-MOSFET and 
p-MOSFET are : 

 
 
 

 
p-MOSFET: 

 
 
 
 
 
 

 
n-MOSFET: 

Linear 
Saturation 
 
 
 
 
 
Linear 
Saturation 

 
 
 
The output characteristics plotted for few fixed values of for p-MOSFET and n-MOSFET 
are shown next : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p-MOSFET                                         n-MOSFET 



The transfer characteristics of both p-MOSFET and n-MOSFET are plotted for a fixed 
value of as shown next : 

 
 
 
 
 
 
 
 
 
 
 
 
 

p-MOSFET                                                  n-MOSFET 
 

 
C-V Characteristics of a MOS Capacitor 

 
As we have seen earlier, there is an oxide layer below Gate terminal. Since oxide is a very good 
insulator, it contributes to an oxide capacitance in the circuit. Normally, the capacitance value 
of a capacitor doesn't change with values of voltage applied across its terminals. However, this 
is not the case with MOS capacitor. We find that the capacitance of MOS capacitor changes its 
value with the variation in Gate voltage. This is because application of gate voltage results in 
the band bending of silicon substrate and hence variation in charge concentration at Si-SiO2 
interface. Also we can see  that the curve splits into two (reason will be explained later), after a 
certain voltage, depending upon the frequency (high or low) of AC voltage applied at the gate. 
This voltage is called the threshold voltage(Vth) of MOS capacitor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cross section view of MOS Capacitor                   plot of MOS Capacitor 
 
 
 
 
 

Modes of operation 
Depending upon the value of gate voltage applied, the MOS capacitor works in three modes : 



 
Accumulation mode (grey layer - strong hole concentration) 

 
 

 
 

 
Depletion Mode (light grey layer – depletion region) 

 
 
 

1. Accumulation: In this mode, there is accumulation of holes (assuming n-MOSFET) at the 
Si-SiO2 interface. All the field lines emanating from the gate terminate on this layer giving 
an effective dielectric thickness as the oxide thickness. In this mode, Vg <0 

 
 

2. Depletion: As we move from negative to positive gate voltages the holes at the 
interface are repelled and pushed back into the bulk leaving a depleted layer. This layer 
counters the positive charge on the gate and keeps increasing till the gate voltage is below 
threshold voltage. we see a larger effective dielectric length and hence a lower capacitance. 

3. Strong Inversion:When Vg crosses threshold voltage, the increase in depletion region 
width stops and charge on layer is countered by mobile electrons at Si-SiO2 interface. This 
is called inversion because the mobile charges are opposite to the type of charges found in 
substrate. In this case the inversion layer is formed by the electrons. Field lines hence 
terminate on this layer thereby reducing the effective dielectric thickness 

 
 
 
 
 
 
 
 
 
 
 

Strong Inversion mode 
(grey layer - strongelectron concentration, light grey - depletion region) 

 
 
 

Threshold voltage 



 

  

 

 

 

     

 
 

 

 
It is that gate voltage at which the surface band bending is twice     , Where 

 
 

We know that the depth of depletion region for         is between 0 and           and is given by, 
 
 
 

 
 
 
 
 

Charge in depletion region at                 is given by                             where 
 
 
 

 
 
 
 

Beyond threshold, the total charge QD  in the seminconductor has to balance the charge on 
gate electrode, Qs  i.e.                             where we define the charge in the inversion layer as 
a quantity which needs to be determined. 

 
This leads to following expression for gate voltage- 

 
 

 
 
 

In case of depletion, there in no inversion layer charge, so Qi =0, i.e. gate voltage 
becomes 

 
 
 

 
 
 
 

but in case of inversion, the gate voltage will be given by : 
The second term in second equality of last expression states our basic assumption, namely that 
any change in gate voltage beyond the threshold requires a change in inversion layer charge. 
Also from the same expression, we obtain threshold voltage as : 

 
 
 

 
 

MOS Fabrication: 
 
 
 
Step1: 
Processing is carried on single crystal silicon of high purity on which required P impurities are 
introduced as crystal is grown. Such wafers are about 75 to 150 mm in diameter and 0.4 mm thick 
and they are doped with say boron to impurity concentration of 10 to power 15/cm3 to 10 to the 
power 16 /cm3. 



 
 
Step 2 : 
A layer of silicon di oxide (SiO2) typically 1 micrometer  thick is grown all over the surface of 
the wafer to protect the surface, acts as a barrier to the dopant during processing, and provide a 
generally insulating substrate  on to which other layers may be deposited and patterned. 

 
 
 
Step 3: 
The surface is now covered with the photo resist which is deposited onto the wafer and spun to an 
even distribution of the required thickness. 

 
 

 
Step 4: 
The photo resist layer is then exposed to ultraviolet light through masking which defines those 
regions into which diffusion is to take place together with transistor channels. Assume, for 
example , that those areas exposed to uv radiations are polymerized (hardened), but that the areas 
required for diffusion are shielded by the mask and remain unaffected. 

 
 

 
Step 5: 
These areas are subsequently readily etched away together with the underlying silicon di oxide so 
that the wafer surface is exposed in the window defined by the mask. 



 
 
Step 6: 
The remaining photo resist is removed and a thin layer of SiO2 (0.1 micro m typical) is grown 
over the entire chip surface and then poly silicon is deposited on the top of this to form the gate 
structure. The polysilicon layer consists of heavily doped polysilicon deposited by chemical 
vapour deposition (CVD). In the fabrication of fine pattern devices, precise control of thickness, 
impurity concentration, and resistivity is necessary 

 
 
 
Step 7: 
Further photo resist coating and masking allows the poly silicon to be patterned and then the thin 
oxide is removed to expose areas into which n-type impurities are to be diffused to form the 
source and drain. Diffusion is achieved by heating the wafer to a high temperature and passing a 
gas containing the desired n-type impurity. 
Note: The poly silicon with underlying thin oxide and the thick oxide acts as mask during 
diffusion the process is self aligning. 

 
Step 8: 



Thick oxide  (SiO2) is grown over all again and is then masked with photo resist and etched to 
expose selected areas of the poly silicon gate and the drain and source areas where connections 
are to be made. (contacts cut) 

 
 
 
 
Step 9: 
The whole chip then has metal (aluminium) deposited over its surface to a thickness typically of 1 
micro m. This metal layer is then masked and etched to form the required interconnection pattern. 

 
 

BODY EFFECT: 
 
 

Transistor is a 4-terminal device. Gate, drain and source are the 3 terminals that are used to 
control the transistor, but the bulk or body, if not properly biased, may put the transistor 
inoperable. 

 
 

 
 
 
 
 
 
 

The pn junctions defined by source-bulk and drain-bulk, which are basically 
two diodes, must be reverse-biased to stop them from leaking current from the source/drain to 
the substrate. That means that the source potential must always be equal or greater than the bulk 
potential. Since drain voltage is always greater or equal than source voltage, we don't even 
consider the drain-bulk junction. 



 
 
When VS>VB, the depletion width of the pn junction increases  That makes it more difficult to 
create a channel with the same VGS, effectively reducing the channel depth. In order to return to 
the same channel depth, VGS needs to increase accordingly.The body effect can be seen as a 
change in threshold voltage 



 

 

Channel Length modulation. 
 
 

This in MOSFET is caused by the increase in depletion layer width at the drain as the drain 
voltage is increased. This leads to a shorter channel length (reduced by        )  and  increased 
drain current. When the channel length of MOSFET is decreased and MOSFET is operated 
beyond channel pinch-off, the relative importance of pinchoff  length            with  respect  to 
physical  length is increased. This  effect  can  be included in saturation current as : 

 

 
 
Here      is called channel length modulation coefficient 

 
 

CMOS Fabrication: 
 

CMOS fabrication can be accomplished using either of the three technologies: 
•   N-well/P-well technologies 
•   Twin well technology 
•   Silicon On Insulator (SOI) 

 
 
 

Twin Well Technology 
 

Using  twin  well  technology,  we  can  optimise  NMOS  and  PMOS  transistors  separately. 
This means that transistor parameters such as threshold voltage, body effect and the channel 
transconductance of both types of transistors can be tuned independenly. 

 
n+  or  p+  substrate,  with   a  lightly  doped  epitaxial   layer  on  top,  forms  the  starting 
material  for  this  technology.  The  n-well  and  pwell  are  formed  on  this  epitaxial  layer 
which forms the actual  substrate. The dopant concentrations can be carefully optimized to 
produce the desired device characterisitcs because two independent doping steps are performed 
to create the well regions. 

 
The conventional n-well  CMOS process suffers from, among other effects, the problem of 
unbalanced drain parasitics since the doping density of the well region typically being about one 
order of magnitude higher than the substrate. This problem is absent in the twin-tub process. 

 
 
 

Silicon on Insulator (SOI) 
 

To  improve  process  characteristics such  as  speed  and latch-up  susceptibility, technologists 
have  sought  to  use  an  insulating  substrate  instead  of  silicon  as  the substrate material. 



Completely isolated NMOS and PMOS transistors can be created virtually side by side on an 
insulating substrate (eg. sapphire) by using the SOI CMOS technology. 

 
 
This technology offers advantages in the form of higher integration density (because of the 
absence of well regions), complete avoidance of the latch-up problem, and lower parasitic 
capacitances compared to the conventional n-well or twin-tub CMOS processes. 

 
But this technology comes with the disadvantage of higher cost than the standard n-well CMOS 
process. Yet the improvements of device performance and the absence of latch- up problems 
can justify its use, especially in deep submicron devices. 

 
 
 
N-well Technology 

 
In this discussion we will concentrate on the well established n-well CMOS fabrication 
technology, which requires that both nchannel and p-channel transistors be built on the same 
chip  substrate. To  accomodate  this, special  regions  are  created with  a semiconductor type 
opposite to the substrate type. The regions thus formed are called wells or tubs. In an n-type 
substrate, we can create a p-well or alternatively, an n-well is created  in  a  p-type  substrate. 
We   present   here   a  simple   n-well   CMOS   fabrication technology, in which the NMOS 
transistor is created in the p-type substrate, and the PMOS in the n-well, which is built-in into 
the p-type substrate. 

 
Historically, fabrication started with p-well technology but now it has been completely shifted 
to n-well technology. The main reason for this is that, "n-well sheet resistance can be made 
lower than p-well sheet resistance" (electrons are more mobile than holes). 

 
The simplified process sequence (shown in Figure 12.41) for the fabrication of CMOS 
integrated circuits on a p-type silicon substrate is as follows: 

 
 

• N-well regions are created for PMOS transistors, by impurity implantation into the 
substrate. 

•   This is followed by the growth of a thick oxide in the regions surround the NMOS 
and PMOS active regions. 

• The  thin  gate  oxide  is  subsequently  grown  on  the  surface  through  thermal 
oxidation. 

•   After  this  n+  and  p+  regions  (source,  drain  and  channel-stop  implants)  are 
created. 

•  The metallization step (creation of metal interconnects) forms the final step in this 
process. 



 
Simplified Process Sequence For Fabrication Of CMOS ICs 

 
The integrated circuit may be viewed as a set of patterned layers of doped silicon, polysilicon, 
metal and insulating silicon dioxide, since each processing step requires that certain areas are 
defined on chip by appropriate masks. A layer is patterned before the next layer of material is 
applied on the chip. A process, called lithography, is used to transfer a pattern to a layer. This 
must be repeated for every layer, using a different mask, since each layer has its own distinct 
requirements. 

 
We illustrate the fabrication steps involved in patterning silicon dioxide through optical 
lithography, which shows the lithographic sequences. 



 



 
 

Process steps required for patterning of silicon dioxide 
 
First an oxide layer is created on the substrate with thermal oxidation of the silicon surface. 
This oxide surface is then covered with a layer of photoresist. Photoresist is a light-sensitive, 
acid-resistant  organic  polymer  which  is  initially  insoluble  in  the developing solution. On 
exposure to ultraviolet (UV) light, the exposed areas become soluble which can be etched away 
by etching solvents. Some areas on the surface are covered with a mask during exposure to 
selectively expose the photoresist. On exposure to UV light, the masked areas are shielded 
whereas those areas which are not shielded become soluble. 

 
There are two types of photoresists, positive and negative photoresist. Positive photoresist is 
initially  insoluble,  but  becomes  soluble  after  exposure  to  UV  light,  where  as  negative 
photoresist is initially soluble but becomes insoluble (hardened) after exposure  to  UV  light. 
The  process  sequence  described  uses  positive  photoresist. 



Negative photoresists are more sensitive to light, but their photolithographic resolution is  not 
as  high  as  that  of  the  positive  photoresists.  Hence,  the  use  of  negative photoresists is less 
common in manufacturing high-density integrated circuits. 

 
The unexposed portions of the photoresist can be removed by a solvent after the UV exposure 
step. The silicon dioxide regions not covered by the hardened photoresist is etched away by 
using a chemical solvent (HF acid) or dry etch (plasma etch) process. On completion of this 
step, we are left with an oxide window which reaches down to the silicon surface. Another 
solvent is used to strip away the remaining photoresist from the silicon dioxide surface. The 
patterned silicon dioxide feature is shown in Figure 12.43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The result of single photolithographic patterning 
sequence on silicon dioxide 

 
The sequence of process steps illustrated in detail actually accomplishes a single pattern transfer 
onto the silicon dioxide surface. The fabrication of semiconductor devices requires several such 
pattern  transfers  to  be  performed  on  silicon  dioxide,  polysilicon,  and  metal.  The  basic 
patterning process used in all fabrication steps, however, is quite similar to the one described 
earlier. Also note that for accurate generation of high- density patterns required in submicron 
devices, electron beam (E-beam) lithography is used instead of optical lithography. 

 
In this section, we will examine the main processing steps involved in fabrication of an n- 
channel MOS transistor on a p-type silicon substrate. 



The  first  step  of  the  process  is  the  oxidation  of  the  silicon  substrate  which  creates  a 
relatively thick silicon dioxide layer on the surface. This oxide layer is called field oxide  The 
field oxide is then selectively etched to expose the silicon surface on which the transistor will 
be created. After this the surface is covered with a thin, high-quality oxide layer. This oxide 
layer will form the gate oxide of the MOS transistor Then a polysilicon layer is deposited on 
the thin oxide   Polysilicon is used as both a gate electrode material for MOS transistors as 
well as an interconnect medium in silicon integrated circuits. The resistivity of  polysilicon, 
which is usually high, is reduced by doping it with impurity atoms. 

 
Deposition is followed by patterning and etching of polysilicon layer to form the interconnects 
and the MOS transistor gates The thin gate oxide not masked by polysilicon is also etched away 
exposing the bare silicon surface. The drain and source junctions are to be formed  Diffusion or 
ion implantation is used  to  dope  the  entire  silicon  surface  with  a  high  concentration  of 
impurities (in this case donor atoms to produce n-type doping). Two n-type regions (source and 
drain junctions) in the p-type substrate as doping penetrates the exposed areas of the silicon 
surface. The penetration of impurity doping into the polysilicon reduces its resistivity. The 
polysilicon gate is patterned before the doping and it precisely defines  the  location  of  the 
channel region and hence, the location of the source and drain regions. Hence this process is 
called a self-aligning process. 

 
The entire surface is again covered with an insulating layer of silicon dioxide after the source 
and drain regions are completed  Next contact windows for the source and drain are patterned 
into the oxide layer . Interconnects are formed by evaporating aluminium on the surface which 
is followed by patterning and etching of the metal layer   A second or third layer of metallic 
interconnect can also be added after adding another oxide layer, cutting (via) holes, depositing 
and patterning the metal. 



 



 



 
Process flow for the fabrication of an n-type MOSFET on p-type silicon 

 
We   now   return   to  the  generalized  fabrication  sequence  of  n-well   CMOS  integrated 
circuits. The following figures illustrate some of the important process steps of the fabrication 
of a CMOS inverter by a top view of the lithographic masks and a cross- sectional view of the 
relevant areas. 

 

 
The  n-well  CMOS  process  starts  with  a  moderately  doped  (with  impurity  concentration 
typically less than 1015 cm-3) p-type silicon substrate. Then, an initial oxide layer is grown on 
the entire surface. The first lithographic mask defines the n-well region. Donor atoms, usually 
phosphorus, are implanted through this window in the oxide. Once the n- well is created, the 
active areas of the nMOS and pMOS transistors can be defined 



 
 
The creation of the n-well region is followed by the growth of a thick field oxide in the areas 
surrounding  the  transistor  active  regions,  and  a  thin  gate  oxide  on  top  of  the active 
regions. The two most important critical fabrication parameters are the thickness and quality of 
the gate oxide. These strongly affect the operational characteristics of the MOS transistor, as 
well as its long-term stability. 

 

 
Chemical vapor deposition (CVD) is used for deposition of polysilicon layer and patterned by 
dry (plasma) etching. The resulting polysilicon lines function as the gate electrodes of 



the nMOS and the pMOS transistors and their interconnects. The polysilicon gates also act as 
self-aligned masks for source and drain implantations. 

 
The n+ and p+ regions are implanted into the substrate and into the n-well using a set of two 
masks. Ohmic contacts to the substrate and to the n-well are also implanted in this process 
step. 

 

 
 
CVD is again used to deposit and insulating silicon dioxide layer over the entire wafer. After 
this  the  contacts  are  defined  and  etched  away  exposing  the  silicon  or  polysilicon contact 
windows. These contact windows are essential to complete the circuit interconnections using 
the metal layer, which is patterned in the next step. 



Metal (aluminum) is deposited over the entire chip surface using metal evaporation, and the 
metal lines are patterned through etching. Since the wafer surface is non-planar, the quality and 
the integrity of the metal lines created in this step are very critical and are ultimately essential 
for circuit reliability. 

 
The composite layout and the resulting cross-sectional view of the chip, showing one nMOS 
and one pMOS transistor (built-in nwell), the polysilicon and metal interconnections. The final 
step is to deposit the passivation layer (for protection) over the chip, except for wire-bonding 
pad areas. 

 
This completes the fabrication of the CMOS inverter using n-well technology. 

 

 



  
  

  

DC Characteristics of CMOS: 
 

Let Vtn and Vtp denote the threshold voltages of the n and p-devices respectively. The following 
voltages at the gate and the drain of the two devices (relative to their respective sources) are all 
referred with respect to the ground (or VSS), which is the substrate voltage of the n -device, namely 

 
Vgsn =Vin , Vdsn =Vout, Vgsp =Vin -VDD , and Vdsp=Vout -VDD . 

 
The voltage transfer characteristic of the CMOS inverter is now derived with reference to the 
following five regions of operation : 

 
Region 1 : the input voltage is in the range               . In this condition, the n -transistor is off, 
while the p -transistor is in linear region (as                                  ). 

 

No actual current flows until Vin crosses Vtn , as may be seen from Figure 2.11. The operating 
point of the p -transistor moves from higher to lower values of currents in linear zone. 

 
Region 2 : the input voltage is in the range                  . The upper limit of Vin is Vinv , the logic 
threshold voltage of the inverter. The logic threshold voltage or the switching point voltage of an 
inverter denotes the boundary of "logic 1" and "logic 0". It is the output voltage at 
which Vin = Vout . In this region, the n-transistor moves into saturation, while the p-transistor 
remains in linear region. The total current through the inverter increases, and the output voltage 
tends to drop fast. 

 
 
 
 
Region 3 : In this region,            . Both the transistors are in saturation, the drain current attains a 
maximum value, and the output voltage falls rapidly. The inverter exhibits gain. But this region is 



    

        

    

  
 

 

   

    

     

inherently unstable. As both the transistors are in saturation, equating their currents, one gets 
 

(as                                      ). 
 

 
 

 
 

 
 

 

where               and                  . Solving for the logic threshold voltage Vinv , one gets 
 

 
 
 
 

 
 

.

 Note that if             and               , then Vinv =0.5 VDD 

 
Region 4 : In this region,                              . As the input voltage Vin is increased beyond Vinv , 
the n -transistor leaves saturation region and enters linear region, while the p -transistor continues 
in saturation. The magnitude of both the drain current and the output voltage drops. 

 
 
Region 5 : In this region,                               . At this point, the p -transistor is turned off, and 
the n -transistor is in linear region, drawing a small current, which falls to zero as Vin 
increases beyond VDD -| Vtp|, since the p -transistor turns off the current path. The output in 
this region 
is           . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
                                                                          UNIT II 
 
                        MOS CIRCUITS DESIGN PROCESS AND CMOS LOGIC GATES   
 
 
Types of Design Rules 

 
The design rules primary address two issues: 

1. The  geometrical  reproduction  of  features  that  can  be  reproduced  by  the 
maskmaking and lithographical process ,and 

2. The interaction between different layers. 
 
There are primarily two approaches in describing the design rules. 

1. Linear scaling is possible only over a limited range of dimensions. 
2. Scalable design rules are conservative .This results in over dimensioned and less dense 

design. 
3. This rule is not used in real life. 

 
1. Scalable Design Rules (e.g. SCMOS, λ-based design rules): 

In this approach, all rules are defined in terms of a single parameter λ. The rules are so 
chosen that a design can be easily ported over a cross section of industrial process  
,making  the  layout  portable  .Scaling  can  be  easily  done  by  simply changing the 
value of. 
The key disadvantages of this approach are: 

 
2. Absolute Design Rules (e.g. μ-based design rules ) : 

In this approach, the design rules are expressed in absolute dimensions (e.g. 
0.75μm) and therefore can exploit the features of a given process to a maximum degree. 
Here, scaling and porting is more demanding, and has to be performed either manually 
or using CAD tools .Also, these rules tend to be more complex especially for deep 
submicron. 
The fundamental unity in the definition of a set of design rules is the minimum line width 
.It stands for the minimum mask dimension that can be safely transferred to the 
semiconductor material .Even for the same minimum dimension, design rules tend to 
differ from company to company, and from process to process. Now, CAD tools allow 
designs to migrate between compatible processes. 



Layer Representations 
 
With increase of complexity in the CMOS processes, the visualization of all the mask levels 
that are used in the actual fabrication process becomes inhibited. The layer concept 
translates these masks to a set of conceptual layout levels that are easier to visualize by the 
circuit designer. From the designer's viewpoint, all CMOS designs have the following entities: 

 
•   Two different substrates and/or wells: which are p-type for NMOS and n-type for 

PMOS. 
• Diffusion regions (p+ and n+): which defines the area where transistors can be 

formed. These regions are also called active areas. Diffusion of an inverse type is needed 
to implement contacts to the well or to substrate.These are called select regions. 

•   Transistor gate electrodes : Polysilicon layer 
•   Metal interconnect layers 
•   Interlayer contacts and via layers. 

 
The layers for typical CMOS processes are represented in various figures in terms of: 

•   A color scheme (Mead-Conway colors). 
•   Other color schemes designed to differentiate CMOS structures. 
•   Varying stipple patterns 
•   Varying line styles 

 

 
Mead Conway Color coding for layers. 



An example of layer representations for CMOS inverter using above design rules is 
shown below- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CMOS Inverter Layout Figure 
 
 
 
Stick Diagrams 

 
Another popular method of symbolic design is "Sticks" layout. In this, the designer draws a 
freehand sketch of a layout, using colored lines to represent the various process layers such as 
diffusion, metal  and polysilicon .Where polysilicon crosses diffusion, transistors are created 
and where metal wires join diffusion or polysilicon, contacts are formed. 

 
This notation indicates only the relative positioning of the various design components. The 
absolute coordinates of these elements are determined automatically by the editor using a 
compactor. The compactor translates the design rules into a set of constraints on the 
component positions, and solve a constrained optimization problem that attempts to minimize 
the area or cost function. 

 
The advantage of this symbolic approach is that the designer does not have to worry about 
design rules, because the compactor ensures that the final layout is physically correct. The 
disadvantage of the symbolic approach is that the outcome of the compaction phase is often 
unpredictable. The resulting layout can be less dense than what is obtained with the manual 
approach. In addition, it does not show exact placement, transistor sizes, wire lengths, wire 
widths, tub boundaries. 



 
For example, stick diagram for CMOS Inverter is shown below. 

 
Stick Diagram of a CMOS Inverter 
 

LAYOUT DIAGRAM 

Layout rules are used to prepare the photo mask used in the fabrication of integrated circuits. The 
rules provide the necessary communication link between the circuit designer and process 
engineer. Design rules represent the best possible compromise between performance and yield. 

The design rules primarily address two issues - 

1. The geometrical reproductions of features that can be reproduced by mask making and 
lithographical processes. 

2. Interaction between different layers 

Design rules can be specified by different approaches 

1. λ-based design rules 

2. μ-based design rules 

As λ-based layout design rules were originally devised to simplify the industry- standard μ-based 
design rules and to allow scaling capability for various processes. It must be emphasized, 
however, that most of the submicron CMOS process design rules do not lend themselves to 
straightforward linear scaling. The use of λ-based design rules must therefore be handled with 
caution in sub-micron geometries. 

λ-based Design Rules 

Features of λ-based Design Rules: λ-based Design Rules have the following features- 

•   λ is the size of a minimum feature 

•   All the dimensions are specified in integer multiple of λ. 



 

 

•   Specifying λ particularizes the scalable rules. 

•   Parasitic are generally not specified in λ units 

•   These rules specify geometry of masks, which will provide reasonable yields 

Guidelines for using λ-based Design Rules: 

 

 

As, Minimum line width of poly is 2λ & Minimum line width of diffusion is 2λ 

 

 

 

 

 

As Minimum distance between two diffusion layers 3λ 

 

 

 

 

 

As It is necessary for the poly to completely cross active, other wise the transistor that has been 
created crossing of diffusion and poly, will be shorted by diffused path of source and drain. 

Contact cut on metal 

 

 

 



 

Contact window will be of 2λ by 2λ that is minimum feature size while metal deposition is of 4λ 
by 4λ for reliable contacts. 

 

In Metal 

 

 

Two metal wires have 3λ distance between them to overcome capacitance coupling and high 
frequency coupling. Metal wires width can be as large as possible to decrease resistance. 

 

 

 

Buttering contact 

 

 

Buttering contact is used to make poly and silicon contact. Window's original width is 4λ, but on 
overlapping width is 2λ. 

So actual contact area is 6λ by 4λ. 

The distance between two wells depends on the well potentials as shown above. The reason for 
8l is that if both wells are at same high potential then the depletion region between them may 
touch each other causing punch-through. The reason for 6l is that if both wells are at different 
potentials then depletion region of one well will be smaller, so both depletion region will not 
touch each other so 6l will be good enough. 



 

 

The active region has length 10λ which is distributed over the followings- 

•   2λ for source diffusion 

•   2λ for drain diffusion 

•   2λ for channel length 

•   2λ for source side encroachment 

•   2λ for drain side encroachment 

Basic Definitions in Delay: 

Before calculating the propagation delay of CMOS Inverter, we will define some basic terms- 

•   Switching speed - limited by time taken to charge and discharge, CL. 

•   Rise time, tr: waveform to rise from 10% to 90% of its steady state value 

•   Fall time tf: 90% to 10% of steady state value 

•    Delay time, td: time difference between input transition (50%) and 50% output level 

 

 

 Propagation delay graph 



The propagation delay tp of a gate defines how quickly it responds to a change at its inputs, it 
expresses the delay experienced by a signal when passing through a gate. It is measured between 
the 50% transition points of the input and output waveforms as shown in the figure 16.1 for an 

inverting gate. The  defines the response time of the gate for a low to high output transition, 

while  refers to a high to low transition. The propagation delay  as the average of the two 

 

 

Quick Estimates: 

We will give an example of how to calculate quick estimate. From fig, we can write following 
equations. 

 

 

 

Example CMOS Inverter Circuit 

 

 

 

 

 

 

 

 Propagation Delay of above MOS circuit 

From figure, when Vin = 0 the capacitor CL charges through the PMOS, and when 

Vin = 5 the capacitor discharges through the N-MOS. The capacitor current is – 

 



 

 

From this the delay times can be derived as 

 

The expressions for the propagation delays as denoted in the figure (16.22) can be easily seen to 
be 

 

 

Rise and Fall Times 

 

 

 

 

trjectory of n-transistor operating point 

Above Figure shows the trajectory of the n-transistor operating point as the input voltage, Vin(t), 
changes from 0V to VDD. Initially, the end-device is cutt-off and the load capacitor is charged to 
VDD. This illustrated by X1 on the characteristic curve. Application of a step voltage (VGS = 
VDD) at the input of the inverter changes the operating point to X2. From there onwards the 
trajectory moves on the VGS= VDD characteristic curve towards point X3 at the origin. 

Thus it is evident that the fall time consists of two intervals: 

1. tf1=period during which  the capacitor voltage, Vout, drops from  0.9VDD to 

(VDD–Vtn) 

2. tf2=period during which the capacitor voltage, Vout, drops from (VDD–Vtn) to 

0.1VDD. 



 

 

 

Equivalent circuit for showing behav. of tf1 

 

 

 

 

 

Equivalent circuit for showing behav. of tf2 

As we saw in last section, the delay periods can be derived using the general equation 

 

while in saturation, 

 

Integrating from t = t1, corresponding to Vout=0.9 VDD, to t = t2 corresponding to Vout=(VDD-
Vtn) results in, 

 

 

 

 

 Rise and Fall time graph 



 

When the n-device begins to operate in the linear region, the discharge current is no longer 
constant. The time tf1 taken to discharge the capacitor voltage from (VDD-Vtn) to 0.1VDD can 
be obtained as before. In linear region, 

 

 

 

Thus the complete term for the fall time is, 

 

 

The fall time tf can be approximated as, 

 

From this expression we can see that the delay is directly proportional to the load capacitance.  
Thus  to  achieve  high  speed  circuits  one  has  to  minimize  the  load capacitance seen by a 
gate. Secondly it is inversely proportion to the supply voltage i.e. as  the  supply  voltage  is  
raised  the  delay  time  is  reduced.  Finally,  the  delay  is proportional to the βn of the driving 
transistor so increasing the width of a transistor decreases the delay. 

Due to the symmetry of the CMOS circuit the rise time can be similarly obtained as; For equally 
sized n and p transistors (where βn=2βp) tf=tr 

Thus the fall time is faster than the rise time primarily due to different carrier mobilites associated 
with the p and n devices thus if we want tf=tr we need to make βn/βp =1. This implies that the 
channel width for the p-device must be increased to approximately 2 to 3 times that of the n-
device. 

The propagation delays if calculated as indicated before turn out to be, 



 

 

 

 

Rise and Fall time graph of Output w.r.t Input 

If we consider the rise time and fall time of the input signal as well, then 

 

These are the rms values for the propagation delays. 

 

Ratioed Logic: 

Instead of combination of active pull down and pull up networks such a gate consists of an NMOS 
pull down network that realizes the logic function and a simple load device. For an inverter PDN 
is single NMOS transistor. 

 



 

 

Ratioed Logic Circuit 

The load can be a passive device, such as a resistor or an active element as a transistor. Let us 
assume that both PDN and load can be represented as linearized resistors. The operation is as 
follows: For a low input signal the pull down network is off and the output is high by the load. 
When the input goes high the driver transistor turns on, and the resulting output voltage is 
determined by the resistive division between the impedances of pull down and load network: 

VOL= RDVDD/(RD+RL) 

where RD = pulldown n/w resistance, RL= load resistance. 

To keep the low noise margin high it is important to chose RL>>RD. This style of logic therefore 
called ratioed, because a careful PDN scaling of impedances (or transistor sizes) is required to 
obtain a workable gate. This is in contrast to the ratioless logic style as complementary CMOS, 
where the low and high level don’t depend upon transistor sizes. As a satisfactory level we keep 
RL>=4RD. To achieve this, (W/L)D/(W/L)L> 4. 

Pass Transistor Logic 

The fundamental building block of nMOS dynamic logic circuit, consisting of an nMOS 

pass transistor is shown in figure  

 

 

 

 

 



 

 

 

 Pass Transistor Logic Circuit 

 

The pass transistor MP is driven by the periodic clock signal and acts as an access switch to either 
charge up or down the parasitic capacitance, Cx, depending on the input signal Vin. Thus there 
are 2 possible operations when the clock signal is active are the logic “1” transfer( charging up the 
capacitance Cx to logic high level) and the logic “0” transfer( charging down the capacitance Cx 
to a logic low level). In either case, the output of the depletion load of  the nMOS inverter 
obviously  assumes a logic low or high  level, depending on the voltage Vx. The pass transistor 
MP provides the only current path to the intermediate capacitive node X. when clock signal 
becomes inactive (clk=0) the pass transistor ceases to conduct and the charge is stored in the 
parasitic capacitor Cx continues to determine the output level of the inverter. Logic “1” Transfer: 
Assume that the Vx = 0 initially. A logic "1"level is applied to the input terminal which 
corresponds to Vin=VOH=VDD. Now the clock signal at the gate of the pass transistor goes from 
0 to VDD at t=0. It can be seen that the pass transistor starts to conduct and operate in saturation 
throughout this cycle since VDS=VGS. Consequently VDS> VGSVtn. 

Analysis: The pass transistor operating in saturation region starts to charge up the capacitor Cx, 
thus: 

 

The previous equation for Vx(t) can be solved as- 

 

The variation of the node voltage Vx(t)is plotted as a function of time in fig. The voltage rises 
from its initial value of 0 and reaches Vmax =VDD-Vtn after a large time. The pass transistor 
will turn off when Vx = Vmax. Since Vgs= Vtn. Therefore Vx can never attain VDD during logic 
1 transfer. Thus we can use buffering to overcome this problem. 



 

 

Node Voltage Vx vs t 

Logic “0” Transfer: Assume that the Vx=1 

Initially. A logic“0” level is applied to the input terminal which corresponds to Vin=1. Now the 
clock signal at the gate of the pass transistor goes from 0 to VDD at t=0. It can be seen that the 
pass transistor starts to conduct and operate in linear mode throughout this cycle and the drain 
current flows in the opposite direction to that of charge up. 

Analysis: We can write – 

 

The above equation for Vx(t) can be solved as – 

 

Plot of Vx(t) is shown in figure  

 

 

 

 

 

Node Voltage Vx vs t 

 

 



 

Dynamic Logic Circuits 

In case of static CMOS for a fan-in of N, 2N transistors are required. In order to reduce this, 
various other design logics were used like pseudo-NMOS logic and pass transistor logic. However 
the static power consumption in these cases increased. An alternative to these design logics is 
Dynamic logic, which reduces the number of transistors at the same time keeps a check on the 
static power consumption. 

Principle: A block diagram of a dynamic logic circuit is as shown in fig 19.31. This uses 

NMOS block to implement its logic 

The operation of this circuit can be explained in two modes. 

1. Precharge 

2. Evaluation 

 

 Dynamic CMOS Block Diagram 

In the precharge mode, the CLK input is at logic 0. This forces the output to logic 1, charging the 
load capacitance to VDD. Since the NMOS transistor M1 is off the pulldown path is disabled. 
There is no static consumption in this case as there is no direct path between supply and ground. 

In the evaluation mode, the CLK input is at logic 1. Now the output depends on the PDN block. If 
there exists a path through PDN to ground (i.e. the PDN network is ON), the capacitor CL will 
discharge else it remains at logic 1.As there exists only one path between the output node and a 
supply rail, which can only be ground, the load capacitor can discharge only once and if this 
happens, it cannot charge until the next precharge operation.  Hence  the inputs  to  the  gate  can  
make  at  most  one  transition  during evaluation 

 

 



 

 

 

 

 

 

 

 

 DOMINO CMOS Block Diagram 

 

Advantages of dynamic logic circuits: 

 

1. As can be seen, the number of transistors required here are N+2 as compared to 

2N in the Static CMOS circuits. 

2. This circuit is still a ratioless circuit as in Static case. Hence, progressive sizing and ordering of 
the transistors in the PDN block is important. 

3. As can be seen, the static power loss is negligible. 

Disadvantages of dynamic logic circuits: 

1. The penalty paid in such circuits is that the clock must run everywhere to each such block as 
shown in the diagram. 

2. The major problem in such circuits is that the output node is at Vdd till the end of the precharge 
mode. Now if the CLK in the next block arrives earlier compared to the CLK in this block, or the 
PDN network in this block takes a longer time to evaluate its output, then the next block will start 
to evaluate using this erroneous value 

The second part of the disadvantage can be eliminated by using DOMINO CMOS circuits which 
are as shown below. 

As can be seen the output at the end of precharge is inverted by the inverter to logic 0. Thus the 
next block will not be evaluated till this output has been evaluated. As an ending point, it must be 
noted that this also has a disadvantage that since at each stage the output is inverted, the logic must 
be changed to accommodate this. 



STATIC CMOS LOGIC: 

The most widely used logic style is static complementary CMOS. The static CMOS style is really 
an extension of the static CMOS inverter to multiple inputs. In review, the primary advantage of 
the CMOS structure is robustness (i.e, low sensitivity to noise), good performance, and low power 
consumption (with no static power consumption). As we will The complementary CMOS circuit 
style falls under a broad class of logic circuits called static circuits in which at every point in time 
(except during the switching transients), each gate output is connected to either VDD or Vss via a 
low-resistance path. Also, the outputs of the gates assume at all times the value of the Boolean 
function implemented by the circuit (ignoring, once again, the transient effects during switching 
periods). This is in contrast to the dynamic circuit class, that relies on temporary storage of signal 
values on the capacitance of high-impedance circuit nodes. The latter approach has the advantage 
that the resulting gate is simpler and faster. On the other hand, its design and operation are more 
involved than those of its static counterpart, due to an increased sensitivity to noise. 

 

Two I/P NAND gate in complementary Static CMOS Style 

CMOS TRANSMISSION GATE: 

We usually see MOSFETs arranged with their sources and drains connected—either directly or 
through, for example, a resistor or active load—to positive and negative supply rails, with the 
gate acting as the input terminal. This is true in both analog circuits, such as the common-source 
amplifier, and digital circuits, such as the ubiquitous CMOS inverter. It’s good to remember, 
though, that the MOSFET is not limited to configurations such as these. 

The channel created by a sufficiently high gate-to-source voltage allows current to flow between 
the source and drain terminals, and in this sense the MOSFET is a voltage-controlled switch. 
Thus, there is no law that prevents us from using the source and drain as input and output 
terminals, with the control voltage applied to the gate. 

A single NMOS (or PMOS) transistor can be used as a voltage-controlled switch. The “circuit” 
(really just a single transistor) is the following: 

  



 
  

the arrow that usually identifies the source is removed.  This is because the source terminal 
actually changes according to whether V1 is higher than V2 or V2 is higher than V1. Also, the use 
of V1 and V2 instead of VIN and VOUT is intended to emphasize that this single NMOS transistor 
can indeed conduct current in both directions. 

As probably expected, this circuit is far from a perfect switch. One problem is the source 
voltage: The current through the MOSFET is influenced by the source voltage, and the source 
voltage depends on whatever signal is passing through the switch. Indeed, if the gate is 
controlled by a driver that cannot exceed VDD, the transistor can pass signals only as high as 
VDD minus the threshold voltage. This threshold-voltage limitation is made even worse by the 
body effect, which comes into play when the FET’s source and body terminals are not at the 
same potential. 

When you analyze and ponder this switch, you recognize a certain asymmetry. For example, if 
we are using this switch for pass-transistor logic, the NMOS can effectively pass a logic-low 
signal but not a full logic-high signal. Is it possible to modify the circuit in a way that will 
redress this asymmetry? If you are maintaining a good CMOS mentality, your intuition might 
tell you that we could achieve better overall performance by incorporating a PMOS transistor to 
compensate for the deficiencies of the NMOS.  

 
  



Here we have a PMOS in parallel with the NMOS; I used an “invert” circle to identify the 
PMOS transistor. Note that the control signal applied to the PMOS is the complement of the 
control signal applied to the NMOS; this is reminiscent of the CMOS inverter, where a logic-
high voltage turns on the NMOS and a logic-low voltage turns on the PMOS. 

This CMOS transmission gate is a synergistic system—the NMOS provides good switch 
performance under conditions that are favorable for itself but not for the PMOS, and the PMOS 
provides good switch performance under conditions that are favorable for itself but not for the 
NMOS. The result is a simple yet effective bidirectional voltage-controlled switch that is 
suitable for both analog and digital applications. 

  

DOMINO LOGIC: 

 

Properties of Domino Logic  

 Only non-inverting logic can be implemented ‰  
 Very high speed ƒ  
 static inverter can be skewed, only L-H transition critical ƒ  
 Input capacitance reduced – smaller logical effort 

 
 

DESIGNING WITH DOMINO LOGIC: 

 

 



 
DIFFERENTIAL CASCODE VOLTAGE SWITCH LOGIC: 
 
 Performance advantage of ratioed circuits without the extra power  
• Requires complementary inputs – produces complementary outputs  
• Operation – two nMOS arrays  one for f, one for f – cross-coupled load pMOS – one path 
is always active 
 • since either f or f is always true – other path is turned off 
 • no static power generic differential logic gate differential AND/NAND gate (logic arrays 
turns off one load) 
 

 
 

Advantages of CVSL : 

 low load capacitance on inputs  
 no static power consumption  
 automatic complementary functions  

 Disadvantages: 

           requires complementary inputs  

           more transistors  for single function 

SCALING OF MOS TRANSISTOR: 



 Types of Scaling  
Two types of scaling are common:  

1) constant field scaling and  
2) constant voltage scaling.  

 
Constant field scaling yields the largest reduction in the power-delay product of a single transistor. 
However, it requires a reduction in the power supply voltage as one decreases the minimum feature 
size.  
Constant voltage scaling does not have this problem and is therefore the preferred scaling method 
since it provides voltage compatibility with older circuit technologies. The disadvantage of 
constant voltage scaling is that the electric field increases as the minimum feature length is 
reduced. This leads to velocity saturation, mobility degradation, increased leakage currents and 
lower breakdown voltages. After scaling, the different Mosfet parameters will be converted as 
given by table below:  
Before Scaling After Constant Field Scaling After Constant Voltage Scaling 

 

 

Where s = scaling parameter of MOS 

 
 
 
 
 
 
 
 
 



UNIT III 

VLSI IMPLEMENTATION STRATEGIES   
 

Design of Carry Lookahead Adders : 
  

To reduce the computation time, there are faster ways to add two binary numbers by using carry lookahead 
adders. They work by creating two signals P and G known to be Carry Propagator and Carry Generator. 
The carry propagator is propagated to the next level whereas the carry generator is used to generate the 
output carry , regardless of input carry. The block diagram of a 4-bit Carry Lookahead Adder is shown here 
below - 

  

 

  

 
The number of gate levels for the carry propagation can be found from the circuit of full adder. The signal 
from input carry Cin to output carry Cout requires an AND gate and an OR gate, which constitutes two gate 
levels. So if there are four full adders in the parallel adder, the output carry C5  would have 2 X 4 = 8 gate 
levels from C1 to C5. For an n-bit parallel adderr, there are 2n gate levels to propagate through. 

 

CARRY GENERATION LOGIC: 

Types of carry generation logic (CGL): lookahead and ripple. With lookahead CGL adder above is 
a CLA. With ripple CGL adder above is equivalent to a ripple adder. 

 



 

 

 

 

CARRY SAVE ADDERS: 



 

The idea of delaying carry resolution until the end, or saving carries, is due to John von 
Neumann.[3] 

Here is an example of a binary sum: 

  10111010101011011111000000001101 

+ 11011110101011011011111011101111 

Carry-save arithmetic works by abandoning the binary notation while still working to base 2. It 
computes the sum digit by digit, as 

  10111010101011011111000000001101 

+ 11011110101011011011111011101111 

= 21122120202022022122111011102212 

The notation is unconventional but the result is still unambiguous. Moreover, given n adders 
(here, n=32 full adders), the result can be calculated after propagating the inputs through a single 
adder, since each digit result does not depend on any of the others. 

If the adder is required to add two numbers and produce a result, carry-save addition is useless, 
since the result still has to be converted back into binary and this still means that carries have to 
propagate from right to left. But in large-integer arithmetic, addition is a very rare operation, and 
adders are mostly used to accumulate partial sums in a multiplication. 

CARRY SAVE ACCUMULATORS: 

The key to success is that at the moment of each partial addition we add three bits: 

 0 or 1, from the number we are adding. 
 0 if the digit in our store is 0 or 2, or 1 if it is 1 or 3. 
 0 if the digit to its right is 0 or 1, or 1 if it is 2 or 3. 

To put it another way, we are taking a carry digit from the position on our right, and passing a 
carry digit to the left, just as in conventional addition; but the carry digit we pass to the left is the 
result of the previous calculation and not the current one. In each clock cycle, carries only have to 
move one step along, and not n steps as in conventional addition. 

Because signals don't have to move as far, the clock can tick much faster. 



There is still a need to convert the result to binary at the end of a calculation, which effectively just 
means letting the carries travel all the way through the number just as in a conventional adder. But 
if we have done 512 additions in the process of performing a 512-bit multiplication, the cost of that 
final conversion is effectively split across those 512 additions, so each addition bears 1/512 of the 
cost of that final "conventional" addition. 

At each stage of a carry-save addition, 

1. We know the result of the addition at once. 
2. We still do not know whether the result of the addition is larger or smaller than a given 

number (for instance, we do not know whether it is positive or negative). 

This latter point is a drawback when using carry-save adders to implement modular multiplication 
(multiplication followed by division, keeping the remainder only). 

The carry-save unit consists of n full adders, each of which computes a single sum and carry bit 
based solely on the corresponding bits of the three input numbers. Given the three n - bit 
numbers a, b, and c, it produces a partial sum ps and a shift-carry sc: 

{\displaystyle ps_{i}=a_{i}\oplus b_{i}\oplus c_{i}}{\displaystyle sc_{i}=(a_{i}\wedge 
b_{i})\vee (a_{i}\wedge c_{i})\vee (b_{i}\wedge c_{i})} 

The entire sum can then be computed by: 

1. Shifting the carry sequence sc left by one place. 
2. Appending a 0 to the front (most significant bit) of the partial sum             
sequence ps. 

3. Using a ripple carry adder to add these two together and produce the resulting n + 1-bit 
value. 

 

 

MULTIPLIERS: 

 

The Serial-parallel Multiplier 

This multiplier is the simplest one, the multiplication being considered as a succession of 
additions. 

 



A possible form of this adder for multiplying four-bit quantities, based on this expression,is set out 
in the below Figure. Note that D indicates a D flip-flop simple and FA indicates a full. adder--or 
adder bit slice. Number A is entered in the right-most 4-bits of the top row of Dflip-flops which are 
connected to three further D flip-flops to form a 7-bit shift register to allow the multiplication of 
number A by 21, 22 .. . 2n, thus forming the partial product at each stage of the process. 

 

 

The structure under discussion here is suited only to positive or unsigned operands. If the operands 
are negative and twos complement encoded, then: 

1. The most significant bit of B will have a negative weight and so a subtraction must be performed 
as the last step. 

2. The most significant bit of A must be replicated since operand A must be expanded to 2N bits. 

 

THE BRAUN ARRAY: 

 

A relatively simple form of parallel adder is the Braun array . All partial products A.bk are 
computed in parallel, then collected through a cascaded array of carry save adders. At the bottom 
of the array, an adder is used to convert the carry save form to the required form of output. 
Completion time is fixed by the depth of the array, and by the carry propagation characteristics of 
the adder. Notice that this multiplier is suited only to positive operands. Negative operands can be 
handled, for example, by the Baugh-Wooley multiplier.. 

 



 

4 BIT Braun Multiplier. 

 

Twos Complement Multipllcation Using the Baugh-Wooley Method 

 

This technique has been developed to· design multipliers that are regular in structure and suited for 
twos complement numbers. 

 

Let us consider two numbers A and B: 

 



 

 

 

Since A and B are n-bit operands, their product may extend to 2n-bits. The first, most significant, 
bit is taken into account by the first term -22n-t which is fed to the multiplier as a 1 in the most 
significant cell. In serial-parallel multipliers there are as many idle clock cycles as there are Os in 
the multiplicand and the same situation applies in Braun and Baugh-Wooley arrays. For this 
reason, it may be useful to introduce pipelining concepts between successive lines of the 

array. The clock speed of the pipeline is limited by the speed of the output adder, but it is possible 
to introduce further pipelining between the adder cells giving rise to the systolic array multiplier. 

 

FPGA: A Field-Programmable Gate Array (FPGA) is a semiconductor device containing 
programmable logic components called "logic blocks", and programmable interconnects. Logic 
blocks can be programmed to perform the function of basic logic gates such as AND, and XOR, or 
more complex combinational functions such as decoders or mathematical functions.  
ASIC: An application-specific integrated circuit (ASIC) is an integrated circuit designed for a 



particular use, rather than intended for general-purpose use. Processors, RAM, ROM, etc are 
examples of ASICs. 
 
FPGA vs ASIC 
Speed 
ASIC rules out FPGA in terms of speed. As ASIC are designed for a specific application they can 
be optimized to maximum, hence we can have high speed in ASIC designs. ASIC can have hight 
speed clocks. 
 

Cost 
FPGAs are cost effective for small applications. But when it comes to complex and large volume 
designs (like 32-bit processors) ASIC products are cheaper. 
 

Size/Area 
FPGA are contains lots of LUTs, and routing channels which are connected via bit 
streams(program). As they are made for general purpose and because of re-usability. They are in-
general larger designs than corresponding ASIC design. For example, LUT gives you both 
registered and non-register output, but if we require only non-registered output, then its a waste of 
having a extra circuitry. In this way ASIC will be smaller in size. 
 

Power 
FPGA designs consume more power than ASIC designs. As explained above the unwanted 
circuitry results wastage of power. FPGA wont allow us to have better power optimization. When 
it comes to ASIC designs we can optimize them to the fullest. 
Time to Market 
FPGA designs will till less time, as the design cycle is small when compared to that of ASIC 
designs. No need of layouts, masks or other back-end processes. Its very simple: Specifications -- 
HDL + simulations -- Synthesis -- Place and Route (along with static-analysis) -- Dump code onto 
FPGA and Verify. When it comes to ASIC we have to do floor planning and also advanced 
verification. The FPGA design flow eliminates the complex and time-consuming floor planning, 
place and route, timing analysis, and mask / re-spin stages of the project since the design logic is 
already synthesized to be placed onto an already verified, characterized FPGA device. 
 
 
Type of Design 
ASIC can have mixed-signal designs, or only analog designs. But it is not possible to design them 
using FPGA chips. 
Customization 



ASIC has the upper hand when comes to the customization. The device can be fully customized as 
ASICs will be designed according to a given specification. Just imagine implementing a 32-bit 
processor on a FPGA! 
 

Prototyping 
Because of re-usability of FPGAs, they are used as ASIC prototypes. ASIC design HDL code is 
first dumped onto a FPGA and tested for accurate results. Once the design is error free then it is 
taken for further steps. Its clear that FPGA may be needed for designing an ASIC. 
 

Non Recurring Engineering/Expenses 
NRE refers to the one-time cost of researching, designing, and testing a new product, which is 
generally associated with ASICs. No such thing is associated with FPGA. Hence FPGA designs 
are cost effective. 

 

Simpler Design Cycle  
Due to software that handles much of the routing, placement, and timing, FPGA designs have 
smaller designed cycle than ASICs. 
 

More Predictable Project Cycle 
Due to elimination of potential re-spins, wafer capacities, etc. FPGA designs have better project 
cycle. 
 

Tools 
Tools which are used for FPGA designs are relatively cheaper than ASIC designs. 
 

Re-Usability 
A single FPGA can be used for various applications, by simply reprogramming it (dumping new 
HDL code). By definition ASIC are application specific cannot be reused. 

Field-Programmable Gate Array  

In most FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or 
more complete blocks of memory. 
Applications 

ASIC prototyping: Due to high cost of ASIC chips, the logic of the application is first verified by 
dumping HDL code in a FPGA. This helps for faster and cheaper testing. Once the logic is verified 
then they are made into ASICs. 



 Very useful in applications that can make use of the massive parallelism offered by their 
architecture. Example: code breaking, in particular brute-force attack, of cryptographic 
algorithms. 

 FPGAs are sued for computational kernels such as FFT or Convolution instead of a 
microprocessor. 

 Applications include digital signal processing, software-defined radio, aerospace and 
defense systems, medical imaging, computer vision, speech recognition, cryptography, bio-
informatics, computer hardware emulation and a growing range of other areas. 

 

Architecture 
 
FPGA consists of large number of "configurable logic blocks" (CLBs) and routing channels. 
Multiple I/O pads may fit into the height of one row or the width of one column in the array. In 
general all the routing channels have the same width. The block diagram of FPGA architecture is 
shown below. 

 

 

 

 

 

 CLB: The CLB consists of an n-bit look-up table (LUT), a flip-flop and a 2x1 mux. The value n is 
manufacturer specific. Increase in n value can increase the performance of a FPGA. Typically n is 
4. An n-bit lookup table can be implemented with a multiplexer whose select lines are the inputs of 
the LUT and whose inputs are constants. An n-bit LUT can encode any n-input Boolean function 



by modeling such functions as truth tables. This is an efficient way of encoding Boolean logic 
functions, and LUTs with 4-6 bits of input are in fact the key component of modern FPGAs. The 
block diagram of a CLB is shown below. 

 

 
 
 
Each CLB has n-inputs and only one input, which can be either the registered or the unregistered 
LUT output. The output is selected using a 2x1 mux. The LUT output is registered using the flip-
flop (generally D flip-flop). The clock is given to the flip-flop, using which the output is registered. 
In general, high fanout signals like clock signals are routed via special-purpose dedicated routing 
networks, they and other signals are managed separately. 
 
Routing channels are programmed to connect various CLBs. The connecting done according to the 
design. The CLBs are connected in such a way that logic of the design is achieved. 
 
FPGA Programming 
 
The design is first coded in HDL (Verilog or VHDL), once the code is validated (simulated and 
synthesized). During synthesis, typically done using tools like Xilinx ISE, FPGA Advantage, etc, a 
technology-mapped net list is generated. The net list can then be fitted to the actual FPGA 
architecture using a process called place-and-route, usually performed by the FPGA company's 
proprietary place-and-route software. The user will validate the map, place and route results via 
timing analysis, simulation, and other verification methodologies. Once the design and validation 
process is complete, the binary file generated is used to (re)configure the FPGA. Once the FPGA is 
(re)configured, it is tested. If there are any issues or modifications, the original HDL code will be 
modified and then entire process is repeated, and FPGA is reconfigured. 

 

FULL CUSTOM DESIGN: 

• A Full custom design is one  which  includes some (possibly all) logic cells that are 
customized and  all mask layers that are customized.  



• A microprocessor is an example of a  full-custom IC . Designers spend many hours  
squeezing  the most out of every last  square micron of microprocessor chip space by hand.  

• Customizing all of the IC  features in this way allows designers to include analog circuits, 
optimized  memory cells, or mechanical structures on an IC, for example. Full-custom ICs 
are the most expensive to  manufacture and to design.  

• The manufacturing lead  time (the time required  just to make an IC not including design 
time) is typically  eight weeks for a full-custom IC.  

• These specialized full-custom ICs are often  intended for a specific application  so, we might 
call some of them as full-custom  ASICs 

• In a full-custom design One has to use full-custom design if the technology is new or so 
specialized that there are no existing cell  libraries or because the technology  is so 
specialized that some circuits must be custom  designed.  

• Fewer and fewer full-custom ICs are being designed because of the  problems with these 
special parts of the technology.  

• The  growing member of  this family,   now a days  is the mixed analog/digital design,  
• an engineer designs some or all of the logic cells, circuits, or layout specifically for one 

application. This means the designer avoids using pretested and pre characterized cells for 
all or part of that design. 

• This might be because existing cell libraries are not fast enough, or the logic cells are not 
small enough or consume too much power.  
 

SEMI CUSTOM DESIGN: 

 

GATE ARRAY BASED DESIGN: 

 

In view of the fast prototyping capability, the gate array (GA) comes after the FPGA.  

Design implementation of  

•FPGA chip is done with user programming,  

• Gate array is done with metal mask design and processing. 

 • Gate array implementation requires a two-step manufacturing process: 

 

 a) The first phase, which is based on generic (standard) masks, results in an array of uncommitted 
transistors on each GA chip. 

 b) These uncommitted chips can be customized later, which is completed by defining the metal 
interconnects between the transistors of the array. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHANNELLED VS CHANNEL- LESS (SOG) APPROACHES: 

 

 

 

STANDARD CELL BASED DESIGN: 

Each cell is designed with a fixed height. 

 – To enable automated placement of the cells, and  

– Routing of inter-cell connections. 

 – A number of cells can be abutted side-by-side to form rows.  

- The power and ground rails typically run parallel to upper and lower boundaries  of cell.  

– Neighboring cells share a common power and ground bus. 

 – nMOS transistors are located closer to the ground rail while the pMOS transistors are placed 

closer to the power rail. The input and output pins are located on the upper and lower boundaries 

of the cell. 

 



 

STANDARD CELLS: 

 

 

Floorplan for Standard Cell Design  

 Inside the I/O frame which is reserved for I/O cells, the chip area contains rows or columns of 
standard cells. Between cell rows are channels for dedicated inter-cell routing. Over-the-cell 
routing is also possible.  The physical design and layout of logic cells ensure that When placed into 
rows, their heights match.  Neighboring cells can be abutted side-by-side, which provides natural 
connections for power and ground lines in each row. 

 

 



UNIT IV 

 

CMOS TESTING 

 

 

Importance of testing: 

Tests fall into three main categories. The first set of tests verifies that the chip performs its 
intended function. These tests, called functionality tests or logic verification, are run before tapeout 
to verify the functionality of the circuit. The second set of tests are run on the first batch of chips 
that return from fabrication. These tests confirm that the chip operates as it was intended and help 
debug any discrepancies. They can be much more extensive than the logic verification tests 
because the chip can be tested at full speed in a system. For example, a new microprocessor can be 
placed in a prototype motherboard to try to boot the operating system. This silicon debug requires 
creative detective work to locate the cause of failures because the designer has much less visibility 
into the fabricated chip compared to during design verification. The third set of tests verify that 
every transistor, gate, and storage element in the chip functions correctly. These tests are 
conducted on each manufactured chip before shipping to the customer to verify that the silicon is 
completely intact. These are called manufacturing tests. In some cases, the same tests can be used 
for all three steps, but often it is better to use one set of tests to chase down logic bugs and another, 
separate set optimized to catch manufacturing defects. 

 

Testing a die (chip) can occur at the following levels: 

Wafer level 

 Packaged chip level 

 Board level 

 System level 

 Field level 

 

Obviously, if faults can be detected at the wafer level, the cost of manufacturing is lower. In an 
extreme example, Intel failed to correct a logic bug in the Pentium floating-point divider until more 
than 4 million units had shipped in 1994. IBM halted sales of Pentium-based computers and Intel 



 

was forced to recall the flawed chips. The mistake and lack of prompt response cost the company 
an estimated $450 million. 

 

It is interesting to note that most failures of 
first-time silicon result from problems with the 
functionality of the design; i.e., the chip does 
exactly what the simulator said it would do, 
but for some reason (almost always human 
error) this functionality is not what the rest of 
the system expects. 

 

 

Logic Verification 

verification tests were required to prove that a 
synthesized gate description was functionally 
equivalent to the source RTL. Figure 15.1 shows 
that we may want to prove that the RTL is equivalent to the design specification at a higher 
behavioral or specification level of abstraction. The behavioral specification might be a verbal 
description, a plain language textual specification, a description in some high-level computer 
language such as C, a program in a system-modeling language such as SystemC, or a hardware 
description language such as VHDL or Verilog, or simply a table of inputs and required outputs. 
Often, designers produce a golden model in one of the previously mentioned formats and it 
becomes the reference against which all other representations are checked. Functional equivalence 
involves running a simulator on the two descriptions of the chip (e.g., one at the gate level and one 
at a functional level) and ensuring that the outputs are equivalent at some convenient check points 
in time for all inputs applied. This is most conveniently done in an HDL by employing a test 
bench; i.e., a wrapper that surrounds a module and provides for stimulus and automated checking. 
The most detailed check might be on a cycle-by-cycle basis. Increasingly, verification involves 
real-time or near real-time emulation in an FPGA-based system to confirm system-
levelperformance in situ; i.e., in the actual system that will use the end chip. This is recommended 
because of the increasing level of complexity of chips and the systems they implement.  

 

You can check functional equivalence through simulation at various levels of the design hierarchy. 
If the description is at the RTL level, the behavior at a system level may be able to be fully 
verified. For instance, in the case of a microprocessor, you can boot the operating system and run 
key programs for the behavioral description. However, this might be impractical (due to long 

Behavioral Specification 

Structural Specification 

Physical Specification 

RTL Specification 

Formal Verification 

Timing Analysis 
Noise Analysis 

Layout vs. Schematic 

Power Analysis 

DRC 

Functional equivalence at various levels of abstraction 



simulation times) for a gate-level model and even harder for a transistor-level model. The way out 
of this impasse is to use the hierarchy inherent within a system to verify chips and modules within 
chips. That, combined with well-defined modular interfaces, goes a long way in increasing the 
likelihood that a system composed of many VLSI chips will be first-time functional. 

 

The best advice with respect to writing functional tests is to simulate as closely as possible the way 
in which the chip or system will be used in the real world. Often, this is impractical due to slow 
simulation times and extremely long verification sequences. One approach is to move up the 
simulation hierar-chy as modules become verified at lower levels. For instance, you could replace 
the gate-level adder and register modules in a video filter with functional models and then in turn 
replace the filter itself with a functional model. At each level, you can write small tests toverify the 
equivalence between the new higher-level functional model and the lower-levelgate or functional 
level. At the top level, you can surround the filter functional model witha software environment 
that models the real-world use of the filter. Verification at the top chip level using an FPGA 
emulator offers several advantages over simulation and, for that matter, the final chip 
implementation. Most noticeably, the emulation speed can be near if not real time. This means that 
the actual analog signals (if used) can be interfaced with the chip. Additionally, to assess system 
performance, you can introduce fine levels of observation and monitoring that might not be 
included in the final chip. For instance, you could include a bit-error rate circuit in a 
communication modem to aid performance optimization. 

 

Manufacturing Tests 

Whereas verification or functionality tests seek to confirm the function of a chip as a whole, 
manufacturing tests are used to verify that every gate operates as expected. The need to do this 
arises from a number of manufacturing defects that might occur during either chip fabrication or 
accelerated life testing (where the chip is stressed by over-voltage and over-temperature 
operation). Typical defects include the following: 

Layer-to-layer shorts (e.g., metal-to-metal) 

 Discontinuous wires (e.g., metal thins when crossing vertical topology jumps)  

 Missing or damaged vias 

 Shorts through the thin gate oxide to the substrate or well 

 

These in turn lead to particular circuit maladies, including the following: 

 Nodes shorted to power or ground ® Nodes shorted to each other 



 Inputs floating/outputs disconnected 

Tests are required to verify that each gate and register is operational and has not been 
compromised by a manufacturing defect. Tests can be carried out at the wafer level to cull out bad 
dies, or can be left until the parts are packaged. This decision would normally be determined by the 
yield and package cost. If the yield is high and the package cost low (i.e., a plastic package), then 
the part can be tested only once after packaging. However, if the wafer yield was lower and the 
package cost high (i.e., an expensive ceramic package), it is more economical to first screen bad 
dice at the wafer level. The length of the tests at the wafer level can be shortened to reduce test 
time based on experience with the test sequence. 

 

Apart from the verification of internal gates, I/O integrity is also tested, with the following tests 
being completed: 

I/O levels (i.e., checking noise margin for TTL, ECL, or CMOS I/O pads)  

Speed test 

With the use of on-chip test structures described in Section 15.6, full-speed wafer testing can be 
completed with a minimum of connected pins. This can be important in reducing the cost of the 
wafer test fixture. 

In general, manufacturing test generation assumes the function of the circuit/chip is correct. It 
requires ways of exercising all gate inputs and monitoring all gate outputs. 

 

FUNCTIONALITY TESTS 

Functionality tests verify that the chip performs its intended function. These tests assert that all the 
gates in the chip, acting in concert, achieve a desired function. These tests are usually used early in 
the design cycle to verify the functionality of the circuit. 

 

OCCURANCE OF DIFFERENT FAULTS: 

 
Examples of physical defects include:  
Defects in silicon substrate  

Photolithographic defects  

Mask contamination and scratches  

Process variations and abnormalities  



Oxide defects  
 
The physical defects can cause electrical faults and logical faults.  
 
The electrical faults include:  
Shorts (bridging faults)  

Opens  

Transistor stuck-on, stuck-open  

Resistive shorts and opens  

Excessive change in threshold voltage  

Excessive steady-state currents  
The electrical faults in turn can be translated into logical faults.  
 
The logicalfaults include:  
Logical stuck-at-0 or stuck-at-I  

Slower transition (delay fault)  

AND-bridging, OR-bridging  
 

 



NAND2, and inverter gates. In this circuit, the input line B can be stuck-at- 1 (s-a- 1), since some 
part of the input line is shorted to the power rail. The pMOS transistor of the first stage NOR2 gate 
is stuck-on due to a process problem that causes a short between its source and drain terminals. 
The top nMOS transistor in the NAND2 gate, on the other hand, is stuck-open due to either an 
incomplete contact (open) of the source or drain node or due to a large separation of drain or 
source diffusion from the gate, which causes permanent turn-off of the transistor regardless of the 
input C value. The stuck-on and stuck-open faults are elaborated on in Fig.The bridging fault 
between the output line of the inverter and the input line C can be due to a fabrication defect which 
causes a short between any two parts of the two lines. Although in the circuit diagram, these two 
lines are seemingly far apart, in the actual layout, some parts of these two lines can be close to 
each other. In such a layout, these two lines can be shorted due to underetching in the line 
patterning process. 

 

 

 

 Improper estimation of on –chip interconnect delays and other timing considerations.  
 Excessive variations in the fabrication process which cause significant variations in circuit 

delays and clock skews.  
 Opens in metal lines connecting parallel transistors which make the effective transistor size 

much smaller.  
 Ageing effects such as hot –carrier induced delay increase.  

 



 

 

 
CONTROLLABILITY AND OBSERVABILITY: 
 
Controllability : The ability to set nets, nodes, gate inputs or outputs or sequential 
elements to a known logic state. 
 Observability : The ability to observe nets, nodes, gate inputs or outputs or sequential 
elements to a known logic state. 
 
Controllability (C1) : Controllability C1 is the probability of a signal value on line l being 
set to 1 by a random vector . Controllability (C0) : Controllability C0 is the probability of 
a signal value on line l being set to 0 by a random vector .  
SCOAP (Sandia Controllability / Observability analysis program) 



 
If a logic gate output is produced by setting only one input to a controlling value then Output 
controllability =min(input controllabilities) +1 If a logic gate output can only be produced by 
setting all inputs to a non -controlling value then  
Output controllability =Σ(input controllabilities) +1 

 

 

Observability Observability =observability of the output + non controlling value +1 



 

 

 



 

 

 

MANUFACTURING TEST PRINCIPLES: 

 

STUCK AT Faults These faults occur when a node is accidently connected to the power 
supply(SA1) or ground (SA0) 

 

 

 

Short circuit and open circuit fault The short S1 results in an S-A-0 fault at input A, while short 
S2 modifies the function of the gate. 

 



 

2-input NOR gate in which one of the transistors is rendered ineffective. If nMOS transistor A is 
stuck open, then the function displayed by the gate will be 

 

 

 

 

Fault Coverage 

 A measure of goodness of a set of test vectors is the amount of fault coverage it achieves. Each 
circuit node is taken in sequence and held to 0 (S-A-0), and the circuit is simulated with the test 
vectors comparing the chip outputs with a known good machine––a circuit with no nodes 
artificially set to 0 (or 1). When a discrepancy is detected between the faulty machine and the good 
machine, the fault is marked as detected and the simulation is stopped. This is repeated for setting 



the node to 1 (S-A-1). In turn, every node is stuck (artificially) at 1 and 0 sequentially. The fault 
coverage of a set of test vectors is the percentage of the total nodes that can be detected as faulty 
when the vectors are applied. 

 

Boundary Scan Test (BST)  

Boundary Scan Test (BST) is a technique involving scan path and self-testing techniques to resolve 
the problem of testing boards carrying VLSI integrated circuits and/or surface mounted devices 
(SMD). Printed circuit boards (PCB) are becoming very dense and complex, especially with SMD 
circuits, that most test equipment cannot guarantee good fault coverage. BST (figure 8.15) consists 
in placing a scan path (shift register) adjacent to each component pin and to interconnect the cells 
in order to form a chain around the border of the circuit. The BST circuits contained on one board 
are then connected together to form a single path through the board. The boundary scan path is 
provided with serial input and output pads and appropriate clock pads which make it possible to: 
Test the interconnections between the various chip Deliver test data to the chips on board for self-
testing Test the chips themselves with internal self-test 

 

The advantages of Boundary scan techniques are as follows : • No need for complex testers in PCB 
testing • Test engineers work is simplified and more efficient • Time to spend on test pattern 
generation and application is reduced • Fault coverage is greatly increased. 

 

 



LOGICAL VERIFICATION: 

 

1.Validation via Simulation  

 

Validation of the initial HDL description is a major bottleneck in the design process. Because the 
HDL description is usually the first description of the design, simulation is the primary 
methodology for validating it. Simulation based validation, however, is necessarily incomplete 
because it is not computationally feasible to exhaustively simulate the entire design. It is therefore 
important to measure the degree of verification coverage, both qualitatively and quantitatively. 
Coverage measures such as code (line) coverage, branch coverage, transition coverage, etc., have 
been used extensively in industry. A “high” degree of simulation coverage provides confidence to 
the designer regarding the correctness of the design. A “low” degree of coverage implies that 
certain functionalities of the design may not have been simulated. In which case, should there be 
an error in the non-simulated portion of the design, it may not have been observed during the 
validation process. It is therefore important to simulate the design functionality as much as 
possible. This requires automatic generation of a large number of simulation vectors to excite all 
the components in the design. Pseudo-randomtechniquesfor automatically generating simulation 
vectors are widely in use. Simulation tools may use random number generators, and randomly 
generate 1s and 0s, collect a vector of inputs and apply them to the design and perform the 
simulation. (Ever seen C language random number generators? Try reading the man-pages for 
random(), randu(), drand48(), etc. These are the most primitive random number generators....) 
While they do produce a virtually endless stream of simulation vectors, enhanced coverage is 
achieved only infrequently. Often, a situation arises where certain areas of code (or parts of the 
design) are not excited by the generated set of vectors. Validation tools can monitor every 
statement of code and keep a record of the number of times it was executed in response to the input 
stimulus. They can thus identify parts of the HDL design that have not been excited at all by the 
simulation vector set. After identifying the parts of the RTL description that were not excited by 
the simulation vectors, validation engineers have to generate the vectors that would excite these 
portions of the design. 

 



 

2.Formal Design Validation/verification 

 

Design descriptions have traditionally been validated by extensive simulation. However, 

simulation based validation offers no guarantees for correctness. Because even if you have 

simulated the entire code - all if-then, case, for, while, etc., statements - you have NOT simulated 

(and CANNOT simulate) every permutation and combination of those if-then-else and 4 other 

statements. For this reason, verification (or should I say validation?) engineers increasingly rely 

upon mathematical techniques to formally prove the correctness of designs. Any digital system can 

be described mathematically, perhaps by a set of mathematical equations - in our case, by Boolean 

equations. A set of rules are used to generate formulas describing the system, and semantic 

functions are used that assign some meaning to the formulas. But what are you verifying (or 

validating)? You wish to verify certain properties of the system. For example, suppose that you are 

asked to design a traffic light controller for a 4-way intersection. You want to ensure, over the 

entire design space of the controller, that the traffic lights controlling two perpendicularly 

intersecting streets  should never be green at the same time. Otherwise there will be an accident! If 

g1 and g2 are the green signals for the intersecting streets, your design should satisfy the property  

throughout the design space. In other words, we need a set of rules to generate formulas defining 

the properties that are to be checked, and semantic functions that define satisfiability of that 

property by the system. Now that we have a mathematical description of the system, as well as a 

mathematical representation of the properties that we wish to verify, all we need to do is formally 

verify whether or not our system satisfies the property. Since we are in the world of VLSI-CAD, 

we need an algorithm to verify the satisfaction relation. This is what is so dramatically called 



“formal verification”. Traditional approaches to formal verification attempt to show that there 

exists a formal proof of the formulae defining the correctness criteria. The proof is obtained from 

the formulas characterizing the design and the axioms underlying the associated logical system. 

This process is referred to as theorem proving. The benefit of this approach is its generality and 

completeness. However, generating the proof automatically is cumbersome in both theory and 

practice. Existing heuristics to automatically generate the proof are both memory and compute 

intensive. As a result, theorem proving lacks the level of automation that is desirable for a CAD 

framework to be practically useful. Model checkingprovides a different approach to the formal 

verification problem. The system is characterized by a finite state transition graph (STG) where the 

vertices represent the configurations (or the states) that the system can reside in, and the edges 

represent the transition between the states. Properties of the system that are to be verified for 

satisfaction are represented using temporal logic formulae. Temporal logics are essentially 

equivalent to various special fragments of linear time logics or of branching time logics. 

Algorithmically, the verification is performed by traversing the state transition graph; starting from 

the initial state, the set of reachable states is found where all the states in the set satisfy the desired 

property. Model checking tools have achieved a significant level of automation and maturity and 

are widely in use in both academia and industry. One of the factors behind the success of model 

checking is that the STG of the underlying system can be relatively easily extracted from the 

designs described in either conventional hardware description languages or from circuit level 

netlists. Hence, the designers find it straightforward to include property verification within their 

design/synthesis methodology, as a common HDL-framework can be used for simulation, 

synthesis and verification.  

 

 

3.Implementation Verification: 

 



 

 

SILICON DEBUG PRINCIPLES: 

 

Logic bugs vs. electrical failures 

 – Most chip failures are logic bugs from inadequate simulation  

– Some are electrical failures  

    • Crosstalk  

    • Dynamic nodes: leakage, charge sharing 

    • Ratio failures – A few are tool or methodology failures (e.g. DRC)  

 ‰ Fix the bugs and fabricate a corrected chip 

SHMOO PLOTS: 

 

How to diagnose failures? 

 – Hard to access chips   

     • Picoprobes 



     • Electron beam 

     • Laser voltage probing  

     • Built-in self-test ‰ 

 Shmoo plots  

 – Vary voltage, frequency 

 – Look for cause of electrical failures 

 

Test Pattern Generation: 

 

Manufacturing test ideally would check every node in the circuit to prove it is not stuck. ‰ Apply 
the smallest sequence of test vectors necessary to prove each node is not stuck. Good observability 
and controllability reduces number of test vectors required for manufacturing test. – Reduces the 
cost of testing – Motivates design-for-test 

 

Design for Test  

‰  

Design the chip to increase observability and controllability .If each register could be observed and 
controlled, test problem reduces to testing combinational logic between registers. Better yet, logic 
blocks could enter test mode where they generate test patterns and report the results automatically. 

 

Scan: 

 

Convert each flip-flop to a scan register – Only costs one extra multiplexer.In Normal mode: flip-
flops behave as usual .In  Scan mode: flip-flops behave as shift register and Contents of flops can 
be scanned out and new values scanned in 

 



 

 

ATPG: 

 

 Test pattern generation is tedious. ‰  
 Automatic Test Pattern Generation (ATPG) tools produce a good set of vectors for each 

block of combinational logic ‰  
 Scan chains are used to control and observe the blocks ‰  
 Complete coverage requires a large number of vectors, raising the cost of test ‰  
 Most products settle for covering 90+% of potential stuck-at faults 

 

Built-in self-test: 

 Built-in self-test lets blocks test themselves 
 Generate pseudo-random inputs to comb. logic  
 Combine outputs into a syndrome – With high probability, block is fault-free if it produces 

the expected syndrome 
 
 

BILBO: 

Built-in Logic Block Observer – Combine scan with PRSG & signature analysis 



 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



UNIT V 
SPECIFICATION USING VERILOG HDL 

 

 

Introduction 

 

With the advent of VLSI technology and increased usage of digital circuits, designers has to design single chips with millions of 

transistors. It became almost impossible to verify these circuits of high complexity on breadboard. Hence Computer-aided techniques 

became critical for verification and design of VLSI digital circuits.As designs got larger and more complex, logic simulation assumed an 

important role in the design process. Designers could iron out functional bugs in the architecture before the chip was designed further. All 

these factors which led to the evolution of Computer-Aided Digital Design, intern led to the emergence of Hardware Description 

Languages. 

Verilog HDL and VHDL are the popular HDLs.Today, Verilog HDL is an accepted IEEE standard. In 1995, the original standard IEEE 

1364-1995 was approved. IEEE 1364-2001 is the latest Verilog HDL standard that made significant improvements to the original 

standard. 

Specifications comes first, they describe abstractly the functionality, interface, and the architecture of the digital IC circuit to be designed. 

 Behavioral description is then created to analyze the design in terms of functionality, performance, compliance to given 

standards, and other specifications. 

 RTL description is done using HDLs. This RTL description is simulated to test functionality. From here onwards we need the 

help of EDA tools. 

 RTL description is then converted to a gate-level net list using logic synthesis tools. A gate-level netlist is a description of the 

circuit in terms of gates and connections between them, which are made in such a way that they meet the timing, power and area 

specifications. 

 Finally a physical layout is made, which will be verified and then sent to fabrication. 

 

Importance of HDLs 

RTL descriptions, independent of specific fabrication technology can be made an verified.functional verification of the design can be done 

early in the design cycle. 

 Better representation of design due to simplicity of HDLs when compared to gate-level schematics. 

 Modification and optimization of the design became easy with HDLs. 

 Cuts down design cycle time significantly because the chance of a functional bug at a later stage in the design-flow is minimal. 

Verilog HDL 

 

Verilog HDL is one of the most used HDLs. It can be used to describe designs at four levels of abstraction: 



1. Algorithmic level. 

2. Register transfer level (RTL). 

3. Gate level. 

4. Switch level (the switches are MOS transistors inside gates). 

Why Verilog ? 

 Easy to learn and easy to use, due to its similarity in syntax to that of the C programming language. 

 Different levels of abstraction can be mixed in the same design. 

 Availability of Verilog HDL libraries for post-logic synthesis simulation. 

 Most of the synthesis tools support Verilog HDL. 

 The Programming Language Interface (PLI) is a powerful feature that allows the user to write custom C code to interact with the 

internal data structures of Verilog. Designers can customize a Verilog HDL simulator to their needs with the PLI. 

Digital design methods 

 

Digital design methods are of two types: 

1. Top-down design method : In this design method we first define the top-level block and then we build necessary sub-blocks, 

which are required to build the top-level block. Then the sub-blocks are divided further into smaller-blocks, and so on. The 

bottom level blocks are called as leaf cells. By saying bottom level it means that the leaf cell cannot be divided further. 

2. Bottom-up design method : In this design method we first find the bottom leaf cells, and then start building upper sub-blocks and 

building so on, we reach the top-level block of the design. 

In general a combination of both types is used. These types of design methods helps the design architects, logics designers, and circuit 

designers. Design architects gives specifications to the logic designers, who follow one of the design methods or both. They identify the 

leaf cells. Circuit designers design those leaf cells, and they try to optimize leaf cells in terms of power, area, and speed. Hence all the 

design goes parallel and helps finishing the job faster. 

Operators 

 

There are three types of operators: unary, binary, and ternary, which have one, two, and three operands respectively. 

 

Unary : Single operand, which precede the operand. 

Ex: x = ~y 

~ is a unary operator 

y is the operand 

 

binary : Comes between two operands. 

Ex: x = y || z 

|| is a binary operator 



y and z are the operands 

 

ternary : Ternary operators have two separate operators that separate three operands. 

Ex: p = x ? y : z 

? : is a ternary operator 

x, y, and z are the operands 

 

List of operators is given here. 

 

Comments 

Verilog HDL also have two types of commenting, similar to that of C programming language. // is used for single line commenting and '/*' 

and '*/' are used for commenting multiple lines which start with /* and end with */. 

EX: // single line comment 

/* Multiple line 

commenting */ 

/* This is a // LEGAL comment */ 

/* This is an /* ILLEGAL */ comment */ 

 

Whitespace 

 - \b - backspace 

 - \t - tab space 

 - \n - new line 

In verilog Whitespace is ignored except when it separates tokens. Whitespace is not ignored in strings. Whitesapces are generally used in 

writing test benches. 

 

Strings 

 

A string in verilog is same as that of C programming language. It is a sequence of characters enclosed in double quotes. String are treated 

as sequence of one byte ASCII values, hence they can be of one line only, they cannot be of multiple lines. 

Ex: " This is a string " 

" This is not treated as 

string in verilog HDL " 

 

Identifiers 

 

Identifiers are user-defined words for variables, function names, module names, block names and instance names.Identifiers begin with a 

letter or underscore and can include any number of letters, digits and underscores. It is not legal to start identifiers with number or the 

dollar($) symbol in Verilog HDL. Identifiers in Verilog are case-sensitive. 

 



Keywords 

 

Keywords are special words reserved to define the language constructs. In verilog all keywords are in lowercase only. A list of all 

keywords in Verilog is given below: 

always 

and 

assign 

attribute 

begin 

buf 

bufif0 

bufif1 

case 

casex 

casez 

cmos 

deassign 

default 

defparam 

disable 

edge 

else 

end 

endattribute 

endcase 

endfunction 

endmodule 

endprimitive 

endspecify 

endtable 

endtask 

event 

for 

force 

forever 

fork 

function 

highz0 

highz1 

if 

ifnone 

initial 

inout 

input 

integer 

join 

medium 

module 

large 

macromodule 

nand 

negedge 

nmos 

nor 

not 

notif0 

notif1 

or 

output 

parameter 

pmos 

posedge 

primitive 

pull0 

pull1 

pulldown 

pullup 

rcmos 

real 

realtime 

reg 

release 

repeat 

rnmos 

rpmos 

rtran 

rtranif0 

rtranif1 

scalared 

signed 

small 

specify 

specparam 

strength 

strong0 

strong1 

supply0 

supply1 

table 

task 

time 

tran 

tranif0 

tranif1 

tri 

tri0 

tri1 

triand 

trior 

trireg 

unsigned 

vectored 

wait 

wand 

weak0 

weak1 

while 

wire 

wor 

xnor 

xor 

 

Verilog keywords also includes compiler directives, system tasks, and functions. Most of the keywords will be explained in the later 

sections. 

 

Number Specification 

 

Sized Number Specification 

 

Representation: [size]'[base][number]  



 [size] is written only in decimal and specifies the number of bits. 

 [base] could be 'd' or 'D' for decimal, 'h' or 'H' for hexadecimal, 'b' or 'B' for binary, and 'o' or 'O' for octal. 

 [number] The number is specified as consecutive digits. Uppercase letters are legal for number specification (in case of 

hexadecimal numbers). 

Ex: 4'b1111 : 4-bit binary number 

16'h1A2F : 16-bit hexadecimal number 

32'd1 : 32-bit decimal number 

8'o3 : 8-bit octal number 

 

Unsized Number Specification 

 

By default numbers that are specified without a [base] specification are decimal numbers. Numbers that are written without a [size] 

specification have a default number of bits that is simulator and/or machine specific (generally 32). 

 

Ex: 123 : This is a decimal number 

'hc3 : This is a hexadecimal number 

Number of bits depends on simulator/machine, generally 32. 

 

x or z values 

 

x - Unknown value. 

z - High impedance value 

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base, and one bit for a number in the 

binary base. 

 

Note: If the most significant bit of a number is 0, x, or z, the number is automatically extended to fill the most significant bits, 

respectively, with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero 

extended. 

 

Negative Numbers 

 

Representation: -[size]'[base][number] 

 

Ex: -8'd9 : 8-bit negative number stored as 2's complement of 8 

-8'sd3 : Used for performing signed integer math 

4'd-2 : Illegal 

 

Underscore(_) and question(?) mark 

 

An underscore, "_" is allowed to use anywhere in a number except in the beginning. It is used only to improve readability of numbers and 



are ignored by Verilog. A question mark "?" is the alternative for z w.r.t. numbers 

Ex: 8'b1100_1101 : Underscore improves readability 

4'b1??1 : same as 4'b1zz1 

Value Set 

 

The Verilog HDL value set consists of four basic values: 

 0 - represents a logic zero, or a false condition. 

 1 - represents a logic one, or a true condition. 

 x - represents an unknown logic value. 

 z - represents a high-impedance state. 

The values 0 and 1 are logical complements of one another. Almost all of the data types in the Verilog HDL store all four basic values. 

 

Nets 

 

Nets are used to make connections between hardware elements. Nets simply reflect the value at one end(head) to the other end(tail). It 

means the value they carry is continuously driven by the output of a hardware element to which they are connected to. Nets are generally 

declared using the keyword wire. The default value of net (wire) is z. If a net has no driver, then its value is z. 

 

Registers 

 

Registers are data storage elements. They hold the value until they are replaced by some other value. Register doesn't need a driver, they 

can be changed at anytime in a simulation. Registers are generally declared with the keyword reg. Its default value is x. Register data types 

should not be confused with hardware registers, these are simply variables. 

 

Integers 

 

Integer is a register data type of 32 bits. The only difference of declaring it as integer is that, it becomes a signed value. When you declare 

it as a 32 bit register (array) it is an unsigned value. It is declared using the keyword integer. 

 

Real Numbers 

 

Real number can be declared using the keyword real. They can be assigned values as follows: 

real r_1; 

 

r_1 = 1.234; // Decimal notation. 

r_1 = 3e4; // Scientific notation.  

 

Parameters 



 

Parameters are the constants that can be declared using the keyword parameter. Parameters are in general used for customization of a 

design. Parameters are declared as follows: 

 

parameter p_1 = 123; // p_1 is a constant with value 123. 

 

Keyword defparam can be used to change a parameter value at module instantiation. Keyword localparam is usedd to declare local 

parameters, this is used when their value should not be changed. 

 

Vectors 

 

Vectors can be a net or reg data types. They are declared as [high:low] or [low:high], but the left number is always the MSB of the vector. 

 

wire [7:0] v_1; // v_1[7] is the MSB. 

reg [0:15] v_2; // v_2[15] is the MSB. 

 

In the above examples: If it is written as v_1[5:2], it is the part of the entire vector which contains 4 bits in order: v_1[5], v_1[4], v_1[3], 

v_1[2]. Similarly v_2[0:7], means the first half part of the vecotr v_2. 

Vector parts can also be specified in a different way: 

vector_name[start_bit+:width] : part-select increments from start_bit. In above example: v_2[0:7] is same as v_2[0+:8]. 

vector_name[start_bit-:width] : part-select decrements from start_bit. In above example: v_1[5:2] is same as v_1[5-:4]. 

 

Arrays 

 

Arrays of reg, integer, real, time, and vectors are allowed. Arrays are declared as follows: 

 

reg a_1[0:7]; 

real a_3[15:0]; 

wire [0:3] a_4[7:0]; // Array of vector 

integer a_5[0:3][6:0]; // Double dimensional array 

 

Strings 

 

Strings are register data types. For storing a character, we need a 8-bit register data type. So if you want to create string variable of length 

n. The string should be declared as register data type of length n*8. 

 

reg [8*8-1:0] string_1; // string_1 is a string of length 8. 

 

Time Data Type 

 

Time data type is declared using the keyword time. These are generally used to store simulation time. In general it is 64-bit long. 



 

time t_1; 

t_1 = $time; // assigns current simulation time to t_1. 

 

There are some other data types, but are considered to be advanced data types, hence they are not discussed here. 

A module is the basic building block in Verilog HDL. In general many elements are grouped to form a module, to provide a common 

functionality, which can be used at many places in the design. Port interface (using input and output ports) helps in providing the 

necessary functionality to the higher-level blocks. Thus any design modifications at lower level can be easily implemented without 

affecting the entire design code. The structure of a module is show in the figure below. 

Keyword module is used to begin a module and it ends with the keyword endmodule. The syntax is as follows: 

module module_name 

--- 

// internals 

--- 

endmodule 

 

Example: D Flip-flop implementation (Try to understand the module structure, ignore unknown constraints/statements). 

 

module D_FlipFlop(q, d, clk, reset); 

 

// Port declarations 

output q; 

reg q; 

input d, clk, reset; 

 

// Internal statements - Logic 

always @(posedge reset or poseedge clk) 

if (reset) 

q < = 1'b0; 

else  

q < = d; 

 

// endmodule statement 

endmodule 

 

Note: 

 Multiple modules can be defined in a single design file with any order. 

 See that the endmodule statement should not written as endmodule; (no ; is used). 

 All components except module, module name, and endmodule are optional. 



 The 5 internal components can come in any order. 

Modules communicate with external world using ports. They provide interface to the modules. A module definition contains list of ports. 

All ports in the list of ports must be declared in the module, ports can be one the following types: 

 Input port, declared using keyword input. 

 Output port, declared using keyword output. 

 Bidirectional port, declared using keyword inout. 

All the ports declared are considered to be as wire by default. If a port is intended to be a wire, it is sufficient to declare it as output, input, 

or inout. If output port holds its value it should be declared as reg type. Ports of type input and inout cannot be declared as reg because reg 

variables hold values and input ports should not hold values but simply reflect the changes in the external signals they are connected to. 

 

Port Connection Rules 

 Inputs: Always of type net(wire). Externally, they can be connected to reg or net type variable. 

 Outputs: Can be of reg or net type. Externally, they must be connected to a net type variable. 

 Bidirectional ports (inout): Always of type net. Externally, they must be connected to a net type variable. 

Note: 

 It is possible to connect internal and external ports of different size. In general you will receive a warning message for width 

mismatch. 

 There can be unconnected ports in module instances. 

Ports can declared in a module in C-language style: 

 

module module_1( input a, input b, output c); 

-- 

// Internals 

-- 

endmodule 

 

If there is an instance of above module, in some other module. Port connections can be made in two types. 

 

Connection by Ordered List: 

module_1 instance_name_1 ( A, B, C); 

Connecting ports by name: 

module_1 instance_name_2 (.a(A), .c(C), .b(B)); 

 

In connecting port by name, order is ignored. 

Logical Operators 



 

Symbol  Description  #Operators  

!  Logical negation  One  

||  Logical OR  Two  

&&  Logical AND  Two  

 

Relational Operators 

Symbol  Description  #Operators  

>  Greater than  Two  

<  Less than  Two  

>=  Greater than or equal to  Two  

<=  Less than or equal to  Two  

 

Equality Operators 

Symbol  Description  #Operators  

==  Equality  Two  

!=  Inequality  Two  

===  Case equality  Two  

!==  Case inequality  Two  

 

Arithmetic Operators 

Symbol  Description  #Operators  

+  Add  Two  

-  Substract  Two  

*  Multiply  Two  

/  Divide  Two  

**  Power  Two  

%  Modulus  Two  

 

Bitwise Operators 



Symbol  Description  #Operators  

~  Bitwise negation  One  

&  Bitwise AND  Two  

|  Bitwise OR  Two  

^  Bitwise XOR  Two  

^~ or ~^  Bitwise XNOR  Two  

 

Reduction Operators 

Symbol  Description  #Operators  

&  Reduction AND  One  

~&  Reduction NAND  One  

|  Reduction OR  One  

~|  Reduction NOR  One  

^  Reduction XOR  One  

^~ or ~^  Reduction XNOR  One  

 

Shift Operators 

Symbol  Description  #Operators  

>>  Right shift  Two  

<<  Left shift  Two  

>>>  Arithmetic right shift  Two  

<<<  Arithmetic left shift  Two  

 

Conditional Operators 

Symbol  Description  #Operators  

?:  Conditional  Two  

 

Replication Operators 

Symbol  Description  #Operators  

{ { } }  Replication  > One  



 

Concatenation Operators 

Symbol  Description  #Operators  

{ }  Concatenation  > One  

 

Operator Precedence 

 

 

Introduction 

 

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels of abstraction in verilog. They are: 

 Behavioral or algorithmic level: This is the highest level of abstraction. A module can be implemented in terms of the design 

algorithm. The designer no need to have any knowledge of hardware implementation. 

 Data flow level: In this level the module is designed by specifying the data flow. Designer must how data flows between various 

registers of the design. 

 Gate level: The module is implemented in terms of logic gates and interconnections between these gates. Designer should know 

the gate-level diagram of the design. 

 Switch level: This is the lowest level of abstraction. The design is implemented using switches/transistors. Designer requires the 

knowledge of switch-level implementation details. 

Gate-level modeling is virtually the lowest-level of abstraction, because the switch-level abstraction is rarely used. In general, gate-level 

modeling is used for implementing lowest level modules in a design like, full-adder, multiplexers, etc. Verilog HDL has gate primitives 

for all basic gates. 

 

Gate Primitives 

 

Gate primitives are predefined in Verilog, which are ready to use. They are instantiated like modules. There are two classes of gate 

primitives: Multiple input gate primitives and Single input gate primitives. 

Multiple input gate primitives include and, nand, or, nor, xor, and xnor. These can have multiple inputs and a single output. They are 

instantiated as follows: 

 

// Two input AND gate. 

and and_1 (out, in0, in1); 

 

// Three input NAND gate. 

nand nand_1 (out, in0, in1, in2);  

 

// Two input OR gate. 



or or_1 (out, in0, in1); 

 

// Four input NOR gate. 

nor nor_1 (out, in0, in1, in2, in3); 

 

// Five input XOR gate. 

xor xor_1 (out, in0, in1, in2, in3, in4); 

 

// Two input XNOR gate. 

xnor and_1 (out, in0, in1); 

 

Note that instance name is not mandatory for gate primitive instantiation. The truth tables of multiple input gate primitives are as follows: 

 

 

Single input gate primitives include not, buf, notif1, bufif1, notif0, and bufif0. These have a single input and one or more outputs. Gate 

primitives notif1, bufif1, notif0, and bufif0 have a control signal. The gates propagate if only control signal is asserted, else the output will 

be high impedance state (z). They are instantiated as follows: 

 

// Inverting gate. 

not not_1 (out, in); 

 

// Two output buffer gate. 

buf buf_1 (out0, out1, in); 

 

// Single output Inverting gate with active-high control signal. 

notif1 notif1_1 (out, in, ctrl); 

 

// Double output buffer gate with active-high control signal. 

bufif1 bufif1_1 (out0, out1, in, ctrl); 

 

// Single output Inverting gate with active-low control signal. 

notif0 notif0_1 (out, in, ctrl); 

 

// Single output buffer gate with active-low control signal. 

bufif0 bufif1_0 (out, in, ctrl); 

 

The truth tables are as follows: 

 

 

Array of Instances: 

 



wire [3:0] out, in0, in1;  

and and_array[3:0] (out, in0, in1); 

 

The above statement is equivalent to following bunch of statements: 

 

and and_array0 (out[0], in0[0], in1[0]);  

and and_array1 (out[1], in0[1], in1[1]); 

and and_array2 (out[2], in0[2], in1[2]);  

and and_array3 (out[3], in0[3], in1[3]); 

 

>> Examples 

 

Gate Delays: 

 

In Verilog, a designer can specify the gate delays in a gate primitive instance. This helps the designer to get a real time behavior of the 

logic circuit. 

 

Rise delay: It is equal to the time taken by a gate output transition to 1, from another value 0, x, or z. 

 

Fall delay: It is equal to the time taken by a gate output transition to 0, from another value 1, x, or z. 

 

Turn-off delay: It is equal to the time taken by a gate output transition to high impedance state, from another value 1, x, or z. 

 If the gate output changes to x, the minimum of the three delays is considered. 

 If only one delay is specified, it is used for all delays. 

 If two values are specified, they are considered as rise, and fall delays. 

 If three values are specified, they are considered as rise, fall, and turn-off delays. 

 The default value of all delays is zero. 

and #(5) and_1 (out, in0, in1); 

// All delay values are 5 time units. 

 

nand #(3,4,5) nand_1 (out, in0, in1); 

// rise delay = 3, fall delay = 4, and turn-off delay = 5. 

 

or #(3,4) or_1 (out, in0, in1); 

// rise delay = 3, fall delay = 4, and turn-off delay = min(3,4) = 3. 

 

There is another way of specifying delay times in verilog, Min:Typ:Max values for each delay. This helps designer to have a much better 

real time experience of design simulation, as in real time logic circuits the delays are not constant. The user can choose one of the delay 



values using +maxdelays, +typdelays, and +mindelays at run time. The typical value is the default value. 

 

and #(4:5:6) and_1 (out, in0, in1); 

// For all delay values: Min=4, Typ=5, Max=6. 

 

nand #(3:4:5,4:5:6,5:6:7) nand_1 (out, in0, in1); 

// rise delay: Min=3, Typ=4, Max=5, fall delay: Min=4, Typ=5, Max=6, turn-off delay: Min=5, Typ=6, Max=7. 

 

In the above example, if the designer chooses typical values, then rise delay = 4, fall delay = 5, turn-off delay = 6. 

 

Examples: 

 

1. Gate level modeling of a 4x1 multiplexer. 

 

The gate-level circuit diagram of 4x1 mux is shown below. It is used to write a module for 4x1 mux. 

 

 

module 4x1_mux (out, in0, in1, in2, in3, s0, s1); 

 

// port declarations 

output out; // Output port. 

input in0, in1, in2. in3; // Input ports. 

input s0, s1; // Input ports: select lines. 

 

// intermediate wires 

wire inv0, inv1; // Inverter outputs. 

wire a0, a1, a2, a3; // AND gates outputs. 

 

// Inverters. 

not not_0 (inv0, s0); 

not not_1 (inv1, s1); 

 

// 3-input AND gates. 

and and_0 (a0, in0, inv0, inv1); 

and and_1 (a1, in1, inv0, s1); 

and and_2 (a2, in2, s0, inv1); 

and and_3 (a3, in3, s0, s1); 

 

// 4-input OR gate. 

or or_0 (out, a0, a1, a2, a3); 



 

endmodule 

 

2. Implementation of a full adder using half adders. 

 

Half adder: 

 

 

 

module half_adder (sum, carry, in0, in1); 

 

output sum, carry; 

input in0, in1; 

 

// 2-input XOR gate. 

xor xor_1 (sum, in0, in1); 

 

// 2-input AND gate. 

and and_1 (carry, in0, in1); 

 

endmodule 

 

Full adder: 

 

 

module full_adder (sum, c_out, ino, in1, c_in); 

 

output sum, c_out; 

input in0, in1, c_in; 

 

wire s0, c0, c1; 

 

// Half adder : port connecting by order. 

half_adder ha_0 (s0, c0, in0, in1); 

 

// Half adder : port connecting by name. 

half_adder ha_1 (.sum(sum), 

                .in0(s0), 

                .in1(c_in), 

                .carry(c1)); 

 



// 2-input XOR gate, to get c_out. 

xor xor_1 (c_out, c0, c1); 

 

endmodule 

Introduction 

 

Dataflow modeling is a higher level of abstraction. The designer no need have any knowledge of logic circuit. He should be aware of data 

flow of the design. The gate level modeling becomes very complex for a VLSI circuit. Hence dataflow modeling became a very important 

way of implementing the design. 

In dataflow modeling most of the design is implemented using continuous assignments, which are used to drive a value onto a net. The 

continuous assignments are made using the keyword assign. 

 

The assign statement 

 

The assign statement is used to make continuous assignment in the dataflow modeling. The assign statement usage is given below: 

 

assign out = in0 + in1; // in0 + in1 is evaluated and then assigned to out. 

 

Note: 

 The LHS of assign statement must always be a scalar or vector net or a concatenation. It cannot be a register. 

 Continuous statements are always active statements. 

 Registers or nets or function calls can come in the RHS of the assignment. 

 The RHS expression is evaluated whenever one of its operands changes. Then the result is assigned to the LHS. 

 Delays can be specified. 

Examples: 

 

assign out[3:0] = in0[3:0] & in1[3:0]; 

 

assign {o3, o2, o1, o0} = in0[3:0] | {in1[2:0],in2}; // Use of concatenation. 

 

Implicit Net Declaration: 

 

wire in0, in1; 

assign out = in0 ^ in1; 

 

In the above example out is undeclared, but verilog makes an implicit net declaration for out. 

 



Implicit Continuous Assignment: 

 

wire out = in0 ^ in1; 

 

The above line is the implicit continuous assignment. It is same as, 

 

wire out; 

assign out = in0 ^ in1; 

 

Delays 

 

There are three types of delays associated with dataflow modeling. They are: Normal/regular assignment delay, implicit continuous 

assignment delay and net declaration delay. 

 

Normal/regular assignment delay: 

 

assign #10 out = in0 | in1; 

 

If there is any change in the operands in the RHS, then RHS expression will be evaluated after 10 units of time. Lets say that at time t, if 

there is change in one of the operands in the above example, then the expression is calculated at t+10 units of time. The value of RHS 

operands present at time t+10 is used to evaluate the expression. 

 

Implicit continuous assignment delay: 

 

wire #10 out = in0 ^ in1; 

 

is same as 

 

wire out; 

assign 10 out = in0 ^ in1; 

 

Net declaration delay: 

 

wire #10 out; 

assign out = in; 

 

is same as 

 

wire out; 

assign #10 out = in; 

 



Examples 

 

1. Implementation of a 2x4 decoder. 

 

module decoder_2x4 (out, in0, in1); 

 

output out[0:3]; 

input in0, in1; 

 

// Data flow modeling uses logic operators. 

assign out[0:3] = { ~in0 & ~in1, in0 & ~in1, 

                  ~in0 & in1, in0 & in1 }; 

 

endmodule 

 

2. Implementation of a 4x1 multiplexer. 

 

module mux_4x1 (out, in0, in1, in2, in3, s0, s1); 

 

output out; 

input in0, in1, in2, in3; 

input s0, s1; 

 

assign out = (~s0 & ~s1 & in0)|(s0 & ~s1 & in1)| 

             (~s0 & s1 & in2)|(s0 & s1 & in0); 

 

endmodule 

 

3. Implementation of a 8x1 multiplexer using 4x1 multiplexers. 

module mux_8x1 (out, in, sel); 

 

output out; 

input [7:0] in; 

input [2:0] sel; 

 

wire m1, m2; 

 

// Instances of 4x1 multiplexers. 

mux_4x1 mux_1 (m1, in[0], in[1], in[2], 

               in[3], sel[0], sel[1]); 



mux_4x1 mux_2 (m2, in[4], in[5], in[6], 

               in[7], sel[0], sel[1]); 

 

assign out = (~sel[2] & m1)|(sel[2] & m2); 

 

endmodule 

 

4. Implementation of a Full adder. 

 

module full_adder (sum, c_out, in0, in1, c_in); 

 

output sum, c_out; 

input in0, in1, c_in; 

 

assign { c_out, sum } = in0 + in1 + c_in; 

 

endmodule 

Introduction 

 

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling techniques are relatively detailed. They 

require some knowledge of how hardware, or hardware signals work. The abstraction in this modeling is as simple as writing the logic in 

C language. This is a very powerful abstraction technique. All that designer needs is the algorithm of the design, which is the basic 

information for any design. 

 

Most of the behavioral modeling is done using two important constructs: initial and always. All the other behavioral statements appear 

only inside these two structured procedure constructs. 

 

The initial Construct 

 

The statements which come under the initial construct constitute the initial block. The initial block is executed only once in the simulation, 

at time 0. If there is more than one initial block. Then all the initial blocks are executed concurrently. The initial construct is used as 

follows: 

initial 

begin 

reset = 1'b0; 

clk = 1'b1; 

end 

 

or 

 



initial 

clk = 1'b1; 

 

In the first initial block there are more than one statements hence they are written between begin and end. If there is only one statement 

then there is no need to put begin and end. 

 

The always Construct 

 

The statements which come under the always construct constitute the always block. The always block starts at time 0, and keeps on 

executing all the simulation time. It works like a infinite loop. It is generally used to model a functionality that is continuously repeated. 

always 

#5 clk = ~clk; 

 

initial 

clk = 1'b0; 

 

The above code generates a clock signal clk, with a time period of 10 units. The initial blocks initiates the clk value to 0 at time 0. Then 

after every 5 units of time it toggled, hence we get a time period of 10 units. This is the way in general used to generate a clock signal for 

use in test benches. 

always @(posedge clk, negedge reset) 

begin 

a = b + c; 

    d = 1'b1; 

end 

 

In the above example, the always block will be executed whenever there is a positive edge in the clk signal, or there is negative edge in the 

reset signal. This type of always is generally used in implement a FSM, which has a reset signal. 

always @(b,c,d) 

begin 

    a = ( b + c )*d; 

    e = b | c; 

end 

 

In the above example, whenever there is a change in b, c, or d the always block will be executed. Here the list b, c, and d is called the 

sensitivity list. 

 

In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include all input signals, used in the always 

block. This is very useful when always blocks is used for implementing the combination logic. 

 



Procedural Assignments 

 

Procedural assignments are used for updating reg, integer, time, real, realtime, and memory data types. The variables will retain their 

values until updated by another procedural assignment. There is a significant difference between procedural assignments and continuous 

assignments. 

Continuous assignments drive nets and are evaluated and updated whenever an input operand changes value. Where as procedural 

assignments update the value of variables under the control of the procedural flow constructs that surround them. 

 

The LHS of a procedural assignment could be: 

 reg, integer, real, realtime, or time data type. 

 Bit-select of a reg, integer, or time data type, rest of the bits are untouched. 

 Part-select of a reg, integer, or time data type, rest of the bits are untouched. 

 Memory word. 

 Concatenation of any of the previous four forms can be specified. 

When the RHS evaluates to fewer bits than the LHS, then if the right-hand side is signed, it will be sign-extended to the size of the left-

hand side. 

 

There are two types of procedural assignments: blocking and non-blocking assignments. 

 

Blocking assignments: A blocking assignment statements are executed in the order they are specified in a sequential block. The execution 

of next statement begin only after the completion of the present blocking assignments. A blocking assignment will not block the execution 

of the next statement in a parallel block. The blocking assignments are made using the operator =. 

 

initial 

begin 

    a = 1; 

    b = #5 2; 

    c = #2 3; 

end 

 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is assigned value 3 at time 7. 

 

Non-blocking assignments: The nonblocking assignment allows assignment scheduling without blocking the procedural flow. The 

nonblocking assignment statement can be used whenever several variable assignments within the same time step can be made without 

regard to order or dependence upon each other. Non-blocking assignments are made using the operator <=. 

Note: <= is same for less than or equal to operator, so whenever it appears in a expression it is considered to be comparison operator and 

not as non-blocking assignment. 



 

initial 

begin 

    a <= 1; 

    b <= #5 2; 

    c <= #2 3; 

end 

 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is assigned value 3 at time 2 (because all 

the statements execution starts at time 0, as they are non-blocking assignments. 

 

Block Statements 

 

Block statements are used to group two or more statements together, so that they act as one statement. There are two types of blocks: 

 Sequential block. 

 Parallel block. 

Sequential block: The sequential block is defined using the keywords begin and end. The procedural statements in sequential block will 

be executed sequentially in the given order. In sequential block delay values for each statement shall be treated relative to the simulation 

time of the execution of the previous statement. The control will pass out of the block after the execution of last statement. 

 

Parallel block: The parallel block is defined using the keywords fork and join. The procedural statements in parallel block will be 

executed concurrently. In parallel block delay values for each statement are considered to be relative to the simulation time of entering the 

block. The delay control can be used to provide time-ordering for procedural assignments. The control shall pass out of the block after the 

execution of the last time-ordered statement. 

 

Note that blocks can be nested. The sequential and parallel blocks can be mixed. 

 

Block names: All the blocks can be named, by adding : block_name after the keyword begin or fork. The advantages of naming a block 

are: 

 It allows to declare local variables, which can be accessed by using hierarchical name referencing. 

 They can be disabled using the disable statement (disable block_name;). 

 

Conditional (if-else) Statement 

 

The condition (if-else) statement is used to make a decision whether a statement is executed or not. The keywords if and else are used to 

make conditional statement. The conditional statement can appear in the following forms. 

if ( condition_1 ) 

    statement_1; 



 

if ( condition_2 ) 

    statement_2; 

else 

    statement_3; 

 

if ( condition_3 ) 

    statement_4; 

else if ( condition_4 ) 

    statement_5; 

else 

    statement_6; 

 

if ( condition_5 ) 

begin 

    statement_7; 

    statement_8; 

end 

else 

begin 

    statement_9; 

    statement_10; 

end 

 

Conditional (if-else) statement usage is similar to that if-else statement of C programming language, except that parenthesis are replaced 

by begin and end. 

 

Case Statement 

 

The case statement is a multi-way decision statement that tests whether an expression matches one of the expressions and branches 

accordingly. Keywords case and endcase are used to make a case statement. The case statement syntax is as follows. 

case (expression) 

    case_item_1: statement_1; 

    case_item_2: statement_2; 

    case_item_3: statement_3; 

    ... 

    ... 

    default: default_statement; 

endcase 



 

If there are multiple statements under a single match, then they are grouped using begin, and end keywords. The default item is optional. 

 

Case statement with don't cares: casez and casex 

 

casez treats high-impedance values (z) as don't cares. casex treats both high-impedance (z) and unknown (x) values as don't cares. Don't-

care values (z values for casez, z and x values for casex) in any bit of either the case expression or the case items shall be treated as don't-

care conditions during the comparison, and that bit position shall not be considered. The don't cares are represented using the ? mark. 

 

Loop Statements 

 

There are four types of looping statements in Verilog: 

 forever 

 repeat 

 while 

 for 

 

Forever Loop 

 

Forever loop is defined using the keyword forever, which Continuously executes a statement. It terminates when the system task $finish is 

called. A forever loop can also be ended by using the disable statement. 

initial 

begin 

    clk = 1'b0; 

    forever #5 clk = ~clk; 

end 

 

In the above example, a clock signal with time period 10 units of time is obtained. 

 

Repeat Loop 

 

Repeat loop is defined using the keyword repeat. The repeat loop block continuously executes the block for a given number of times. The 

number of times the loop executes can be mention using a constant or an expression. The expression is calculated only once, before the 

start of loop and not during the execution of the loop. If the expression value turns out to be z or x, then it is treated as zero, and hence 

loop block is not executed at all. 

initial 

begin 

    a = 10; 



    b = 5; 

    b <= #10 10; 

    i = 0; 

    repeat(a*b) 

    begin 

        $display("repeat in progress"); 

        #1 i = i + 1; 

    end 

end 

 

In the above example the loop block is executed only 50 times, and not 100 times. It calculates (a*b) at the beginning, and uses that value 

only. 

 

While Loop 

 

The while loop is defined using the keyword while. The while loop contains an expression. The loop continues until the expression is true. 

It terminates when the expression is false. If the calculated value of expression is z or x, it is treated as a false. The value of expression is 

calculated each time before starting the loop. All the statements (if more than one) are mentioned in blocks which begins and ends with 

keyword begin and end keywords. 

initial 

begin 

    a = 20; 

    i = 0; 

    while (i < a) 

    begin 

    $display("%d",i); 

    i = i + 1; 

    a = a - 1; 

    end 

end 

 

In the above example the loop executes for 10 times. ( observe that a is decrementing by one and i is incrementing by one, so loop 

terminated when both i and a become 10). 

 

For Loop 

 

The For loop is defined using the keyword for. The execution of for loop block is controlled by a three step process, as follows: 

1. Executes an assignment, normally used to initialize a variable that controls the number of times the for block is executed. 

2. Evaluates an expression, if the result is false or z or x, the for-loop shall terminate, and if it is true, the for-loop shall execute its 

block. 



3. Executes an assignment normally used to modify the value of the loop-control variable and then repeats with second step. 

Note that the first step is executed only once. 

initial 

begin 

    a = 20; 

    for (i = 0; i < a; i = i + 1, a = a - 1) 

    $display("%d",i); 

end 

 

The above example produces the same result as the example used to illustrate the functionality of the while loop. 

 

Examples 

 

1. Implementation of a 4x1 multiplexer. 

 

module 4x1_mux (out, in0, in1, in2, in3, s0, s1); 

 

output out; 

 

// out is declared as reg, as default is wire 

 

reg out; 

 

// out is declared as reg, because we will 

// do a procedural assignment to it. 

 

input in0, in1, in2, in3, s0, s1; 

 

// always @(*) is equivalent to 

// always @( in0, in1, in2, in3, s0, s1 ) 

 

always @(*) 

begin 

  case ({s1,s0}) 

      2'b00: out = in0; 

      2'b01: out = in1; 

      2'b10: out = in2; 

      2'b11: out = in3; 

      default: out = 1'bx; 

  endcase 



end 

 

endmodule 

 

2. Implementation of a full adder. 

 

module full_adder (sum, c_out, in0, in1, c_in); 

 

output sum, c_out; 

reg sum, c_out 

 

input in0, in1, c_in; 

 

always @(*) 

  {c_out, sum} = in0 + in1 + c_in; 

 

endmodule 

 

3. Implementation of a 8-bit binary counter. 

 

module ( count, reset, clk ); 

 

output [7:0] count; 

reg [7:0] count; 

 

input reset, clk; 

 

// consider reset as active low signal 

 

always @( posedge clk, negedge reset) 

begin 

  if(reset == 1'b0) 

      count <= 8'h00; 

  else 

      count <= count + 8'h01; 

end 

 

endmodule 

 

Implementation of a 8-bit counter is a very good example, which explains the advantage of behavioral modeling. Just imagine how 

difficult it will be implementing a 8-bit counter using gate-level modeling. 



In the above example the incrementation occurs on every positive edge of the clock. When count becomes 8'hFF, the next increment will 

make it 8'h00, hence there is no need of any modulus operator. Reset signal is active low. 

Introduction 

 

Tasks and functions are introduced in the verilog, to provide the ability to execute common procedures from different places in a 

description. This helps the designer to break up large behavioral designs into smaller pieces. The designer has to abstract the similar pieces 

in the description and replace them either functions or tasks. This also improves the readability of the code, and hence easier to debug. 

Tasks and functions must be defined in a module and are local to the module. Tasks are used when: 

 There are delay, timing, or event control constructs in the code. 

 There is no input. 

 There is zero output or more than one output argument. 

Functions are used when: 

 The code executes in zero simulation time. 

 The code provides only one output(return value) and has at least one input. 

 There are no delay, timing, or event control constructs. 

 

Differences 

Functions  Tasks 

Can enable another function but not another task. Can enable other tasks and functions. 

Executes in 0 simulation time. May execute in non-zero simulation time. 

Must not contain any delay, event, or timing control 

statements. 
May contain delay, event, or timing control statements. 

Must have at least one input argument. They can have more 

than one input. 
May have zero or more arguments of type input, output, or inout. 

Functions always return a single value. They cannot have 

output or inout arguments. 

Tasks do not return with a value, but can pass multiple values through 

output and inout arguments. 

 

Tasks 

 

There are two ways of defining a task. The first way shall begin with the keyword task, followed by the optional keyword automatic, 

followed by a name for the task, and ending with the keyword endtask. The keyword automatic declares an automatic task that is reentrant 

with all the task declarations allocated dynamically for each concurrent task entry. Task item declarations can specify the following: 

 Input arguments. 



 Output arguments. 

 Inout arguments. 

 All data types that can be declared in a procedural block 

The second way shall begin with the keyword task, followed by a name for the task and a parenthesis which encloses task port list. The 

port list shall consist of zero or more comma separated ports. The task body shall follow and then the keyword endtask. 

 

In both ways, the port declarations are same. Tasks without the optional keyword automatic are static tasks, with all declared items being 

statically allocated. These items shall be shared across all uses of the task executing concurrently. Task with the optional keyword 

automatic are automatic tasks. All items declared inside automatic tasks are allocated dynamically for each invocation. Automatic task 

items can not be accessed by hierarchical references. Automatic tasks 

can be invoked through use of their hierarchical name. 

 

Functions 

 

Functions are mainly used to return a value, which shall be used in an expression. The functions are declared using the keyword function, 

and definition ends with the keyword endfunction. 

 

If a function is called concurrently from two locations, the results are non-deterministic because both calls operate on the same variable 

space. The keyword automatic declares a recursive function with all the function declarations allocated dynamically for each recursive 

call. Automatic function items can not be accessed by hierarchical references. Automatic functions can be invoked through the use of their 

hierarchical name. 

 

When a function is declared, a register with function name is declared implicitly inside Verilog HDL. The output of a function is passed 

back by setting the value of that register appropriately. 

 

Examples 

 

1. Simple task example, where task is used to get the address tag and offset of a given address. 

 

module example1_task; 

 

input addr; 

wire [31:0] addr; 

 

wire [23:0] addr_tag; 

wire [7:0] offset; 

 

task get_tag_and_offset ( addr, tag, offset); 

 

input addr; 



output tag, offset; 

 

begin 

 tag = addr[31:8]; 

 offset = addr[7:0]; 

end 

endtask 

 

always @(addr) 

begin 

 get_tag_and_offset (addr, addr_tag, addr_offset); 

end 

 

// other internals of module 

 

endmodule 

 

2. Task example, which uses the global variables of a module. Here task is used to do temperature conversion. 

 

module example2_global; 

 

real t1; 

real t2; 

 

// task uses the global variables of the module 

 

task t_convert; 

begin 

 t2 = (9/5)*(t1+32); 

end 

endtask 

 

always @(t1) 

begin 

 t_convert(); 

end 

 

endmodule 

 



 

 

 

 

 


